ÎÒÃÇÔÚÏÂÃæµÄ±í¸ñÖÐÌîдÊýÖµ£ºÏȽ«µÚ1ÐеÄËùÓпոñÌîÉÏ1£»ÔÙ°ÑÒ»¸öÊ×ÏîΪ1£¬¹«±ÈΪqµÄÊýÁÐ{an}ÒÀ´ÎÌîÈëµÚÒ»ÁеĿոñÄÚ£»È»ºó°´ÕÕ¡°ÈÎÒâÒ»¸ñµÄÊýÊÇËüÉÏÃæÒ»¸ñµÄÊýÓëËü×ó±ßÒ»¸ñµÄÊýÖ®ºÍ¡±µÄ¹æÔòÌîдÆäËû¿Õ¸ñ£®
µÚ1ÁÐ µÚ2ÁÐ µÚ3ÁÐ ¡­ µÚnÁÐ
µÚ1ÐÐ 1 1 1 ¡­ 1
µÚ2ÐÐ q
µÚ3ÐÐ q2
¡­ ¡­
µÚnÐÐ qn-1
£¨1£©°´ÕÕÌîд¹æÔò£¬ÇëÔÚÉÏÊö±í¸ñÄÚÌîдµÚ¶þÐеĿոñÒÔ¼°µÚ¶þÁеĿոñ£»
£¨2£©ÊÔÓÃn¡¢q±íʾµÚ¶þÁеĸ÷ÊýÖ®ºÍ£»
£¨3£©ÉèµÚ3ÁеÄÊýÒÀ´ÎΪc1£¬c2£¬c3£¬¡­£¬cn£¬Èôc1£¬c2£¬c3³ÉµÈ±ÈÊýÁУ¬ÊÔÇóqµÄÖµ£»ÄÜ·ñÕÒµ½qµÄÖµ£¬Ê¹µÃÊýÁÐc1£¬c2£¬c3£¬¡­£¬cnµÄÇ°mÏîc1£¬c2£¬c3£¬¡­£¬cm£¨m¡Ý3£©³ÉΪµÈ±ÈÊýÁУ¿ÈôÄÜÕÒµ½£¬mµÄÖµÓжàÉÙ¸ö£¿Èô²»ÄÜÕÒµ½£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©°´Õչ涨µÄÒªÇó£¬ÒÀ´ÎÌîд¼´¿É£®
£¨2£©ÓÉ£¨1£©S=1+£¨1+q£©+£¨1+q+q2£©+¡­+£¨1+q+¡­+qn-1£©£¬¸÷ÏîÀûÓõȱÈÊýÁеÄÇ°nÏîºÍ¹«Ê½»¯¼ò£¬ÔÙÇóºÍ£®
£¨3£©¿ÉÖªc1=1£¬c2=2+q£¬c3=3+2q+q2£¬c1£¬c2£¬c3³ÉµÈ±ÈÊýÁÐÇó³öq=-
1
2
£¬c4=4+3q+2q2+q3µÃÖªc4=
23
8
£¬¶ø
c4
c3
=
23
8
9
4
¡Ù
3
2
£¬ËùÒÔ¶ÔÓÚÈÎÒâµÄm¡Ý4£¬c1£¬c2£¬c3£¬¡­£¬cmÒ»¶¨²»ÊǵȱÈÊýÁУ®
½â´ð£º½â£º£¨1£©Èç±í¡­£¨3·Ö£©
µÚ1ÁÐ µÚ2ÁÐ µÚ3ÁÐ ¡­ µÚnÁÐ
µÚ1ÐÐ 1 1 1 ¡­ 1
µÚ2ÐÐ q 1+q 2+q £¨n-1£©q
µÚ3ÐÐ q2 1+q+q2
¡­ ¡­
µÚnÐÐ qn-1 1+q+¡­qn-1
£¨2£©S=1+£¨1+q£©+£¨1+q+q2£©+¡­+£¨1+q+¡­+qn-1£©
µ±q=1ʱ£¬S=1+2+3+¡­+n=
n(n+1)
2
   
 µ±q¡Ù1ʱ£¬1+q+¡­+qn-1=
1-qn
1-q

S=
n-(q1+q2+¡­+qn)
1-q
=
n
1-q
-
qn-qn+1
(1-q)2

ËùÒÔ×ÛÉÏ¿ÉÖªSn=
n(n+1)
2
q=1
n
1-q
-
qn-qn+1
(1-q)2
q¡Ù1

£¨3£©¿ÉÖªc1=1£¬c2=2+q£¬c3=3+2q+q2
ÓÉc22=c1c3⇒q=-
1
2
£¬Ôòc1=1£¬c2=
3
2
£¬c3=
9
4

Èôm¡Ý3ʱ£¬c1£¬c2£¬c3£¬¡­£¬cmΪµÈ±ÈÊýÁУ¬ÄÇôc1£¬c2£¬c3Ò»¶¨ÊǵȱÈÊýÁÐ
ÓÉÉÏ¿ÉÖª´Ëʱq=-
1
2
£¬ÓÖ c4=4+3q+2q2+q3µÃÖªc4=
23
8

¶ø
c4
c3
=
23
8
9
4
¡Ù
3
2
£¬ËùÒÔ¶ÔÓÚÈÎÒâµÄm¡Ý4£¬c1£¬c2£¬c3£¬¡­£¬cmÒ»¶¨²»ÊǵȱÈÊýÁÐ
×ÛÉÏËùÊö£¬µ±ÇÒ½öµ±m=3ÇÒq=-
1
2
ʱ£¬ÊýÁÐc1£¬c2£¬c3£¬¡­£¬cmÊǵȱÈÊýÁУ®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éµÈ±ÈÊýÁеĶ¨Òå¡¢Åжϡ¢ÊýÁÐÇóºÍ£®¿¼²éÔĶÁ¡¢¼ÆËã¡¢·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2007•ÉϺ££©ÎÒÃÇÔÚÏÂÃæµÄ±í¸ñÄÚÌîдÊýÖµ£ºÏȽ«µÚ1ÐеÄËùÓпոñÌîÉÏ1£»ÔÙ°ÑÒ»¸öÊ×ÏîΪ1£¬¹«±ÈΪqµÄÊýÁÐ{an}ÒÀ´ÎÌîÈëµÚÒ»ÁеĿոñÄÚ£»È»ºó°´ÕÕ¡°ÈÎÒâÒ»¸ñµÄÊýÊÇËüÉÏÃæÒ»¸ñµÄÊýÓëËü×ó±ßÒ»¸ñµÄÊýÖ®ºÍ¡±µÄ¹æÔòÌîдÆäËü¿Õ¸ñ£®
µÚ1ÁÐ µÚ2ÁÐ µÚ3ÁÐ ¡­ µÚnÁÐ
µÚ1ÐÐ 1 1 1 ¡­ 1
µÚ2ÐÐ q
µÚ3ÐÐ q2
¡­ ¡­
µÚnÐÐ qn-1
£¨1£©ÉèµÚ2ÐеÄÊýÒÀ´ÎΪB1£¬B2£¬¡­£¬Bn£¬ÊÔÓÃn£¬q±íʾB1+B2+¡­+BnµÄÖµ£»
£¨2£©ÉèµÚ3ÁеÄÊýÒÀ´ÎΪc1£¬c2£¬c3£¬¡­£¬cn£¬ÇóÖ¤£º¶ÔÓÚÈÎÒâ·ÇÁãʵÊýq£¬c1+c3£¾2c2£»
£¨3£©ÇëÔÚÒÔÏÂÁ½¸öÎÊÌâÖÐÑ¡ÔñÒ»¸ö½øÐÐÑо¿ £¨Ö»ÄÜÑ¡ÔñÒ»¸öÎÊÌ⣬Èç¹û¶¼Ñ¡£¬±»ÈÏΪѡÔñÁ˵ÚÒ»ÎÊ£©£®
¢ÙÄÜ·ñÕÒµ½qµÄÖµ£¬Ê¹µÃ£¨2£©ÖеÄÊýÁÐc1£¬c2£¬c3£¬¡­£¬cnµÄÇ°mÏîc1£¬c2£¬¡­£¬cm £¨m¡Ý3£©³ÉΪµÈ±ÈÊýÁУ¿ÈôÄÜÕÒµ½£¬mµÄÖµÓжàÉÙ¸ö£¿Èô²»ÄÜÕÒµ½£¬ËµÃ÷ÀíÓÉ£®
¢ÚÄÜ·ñÕÒµ½qµÄÖµ£¬Ê¹µÃÌîÍê±í¸ñºó£¬³ýµÚ1ÁÐÍ⣬»¹Óв»Í¬µÄÁ½ÁÐÊýµÄÇ°ÈýÏî¸÷×ÔÒÀ´Î³ÉµÈ±ÈÊýÁУ¿²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÎÒÃÇÔÚÏÂÃæµÄ±í¸ñÖÐÌîдÊýÖµ£ºÏȽ«µÚ1ÐеÄËùÓпոñÌîÉÏ1£»ÔÙ°ÑÒ»¸öÊ×ÏîΪ1£¬¹«±ÈΪqµÄÊýÁÐ{an}ÒÀ´ÎÌîÈëµÚÒ»ÁеĿոñÄÚ£»È»ºó°´ÕÕ¡°ÈÎÒâÒ»¸ñµÄÊýÊÇËüÉÏÃæÒ»¸ñµÄÊýÓëËü×ó±ßÒ»¸ñµÄÊýÖ®ºÍ¡±µÄ¹æÔòÌîдÆäËû¿Õ¸ñ£®
µÚ1ÁÐ µÚ2ÁÐ µÚ3ÁÐ ¡­ µÚnÁÐ
µÚ1ÐÐ 1 1 1 ¡­ 1
µÚ2ÐÐ q
µÚ3ÐÐ q2
¡­ ¡­
µÚnÐÐ qn-1
£¨1£©°´ÕÕÌîд¹æÔò£¬ÇëÔÚÉÏÊö±í¸ñÄÚÌîдµÚ¶þÐеĿոñÒÔ¼°µÚ¶þÁеĿոñ£»
£¨2£©ÊÔÓÃn¡¢q±íʾµÚ¶þÁеĸ÷ÊýÖ®ºÍ£»
£¨3£©ÉèµÚ3ÁеÄÊýÒÀ´ÎΪc1£¬c2£¬c3£¬¡­£¬cn£¬Èôc1£¬c2£¬c3³ÉµÈ±ÈÊýÁУ¬ÊÔÇóqµÄÖµ£»ÄÜ·ñÕÒµ½qµÄÖµ£¬Ê¹µÃÊýÁÐc1£¬c2£¬c3£¬¡­£¬cnµÄÇ°mÏîc1£¬c2£¬c3£¬¡­£¬cm£¨m¡Ý3£©³ÉΪµÈ±ÈÊýÁУ¿ÈôÄÜÕÒµ½£¬mµÄÖµÓжàÉÙ¸ö£¿Èô²»ÄÜÕÒµ½£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

21.ÎÒÃÇÔÚÏÂÃæµÄ±í¸ñÄÚÌîдÊýÖµ£ºÏȽ«µÚ1ÐеÄËùÓпոñÌîÉÏ1£»ÔÙ°ÑÒ»¸öÊ×ÏîΪ1£¬¹«±ÈΪµÄÊýÁÐÒÀ´ÎÌîÈëµÚÒ»ÁеĿոñÄÚ£»È»ºó°´ÕÕ¡°ÈÎÒâÒ»¸ñµÄÊýÊÇËüÉÏÃæÒ»¸ñµÄÊýÓëËü×ó±ßÒ»¸ñµÄÊýÖ®ºÍ¡±µÄ¹æÔòÌîдÆäËü¿Õ¸ñ.

 

µÚ1ÁÐ

µÚ2ÁÐ

µÚ3ÁÐ

¡­

µÚÁÐ

µÚ1ÐÐ

1

1

1

¡­

1

µÚ2ÐÐ

 

 

 

 

µÚ3ÐÐ

 

 

 

 

¡­

¡­

 

 

 

 

µÚÐÐ

 

 

 

 

(1) ÉèµÚ2ÐеÄÊýÒÀ´ÎΪ£¬ÊÔÓñíʾµÄÖµ£»

(2) ÉèµÚ3ÁеÄÊýÒÀ´ÎΪ£¬ÇóÖ¤£º¶ÔÓÚÈÎÒâ·ÇÁãʵÊý£¬£»

(3) ÇëÔÚÒÔÏÂÁ½¸öÎÊÌâÖÐÑ¡ÔñÒ»¸ö½øÐÐÑо¿ (Ö»ÄÜÑ¡ÔñÒ»¸öÎÊÌ⣬Èç¹û¶¼Ñ¡£¬±»ÈÏΪѡÔñÁ˵ÚÒ»ÎÊ£©.

    ¢Ù ÄÜ·ñÕÒµ½µÄÖµ£¬Ê¹µÃ(2) ÖеÄÊýÁеÄÇ°Ïî () ³ÉΪµÈ±ÈÊýÁУ¿ÈôÄÜÕÒµ½£¬mµÄÖµÓжàÉÙ¸ö£¿Èô²»ÄÜÕÒµ½£¬ËµÃ÷ÀíÓÉ.

    ¢Ú ÄÜ·ñÕÒµ½µÄÖµ£¬Ê¹µÃÌîÍê±í¸ñºó£¬³ýµÚ1ÁÐÍ⣬»¹Óв»Í¬µÄÁ½ÁÐÊýµÄÇ°ÈýÏî¸÷×ÔÒÀ´Î³ÉµÈ±ÈÊýÁУ¿²¢ËµÃ÷ÀíÓÉ.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2007ÄêÉϺ£Êдº¼¾¸ß¿¼ÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÎÒÃÇÔÚÏÂÃæµÄ±í¸ñÄÚÌîдÊýÖµ£ºÏȽ«µÚ1ÐеÄËùÓпոñÌîÉÏ1£»ÔÙ°ÑÒ»¸öÊ×ÏîΪ1£¬¹«±ÈΪqµÄÊýÁÐ{an}ÒÀ´ÎÌîÈëµÚÒ»ÁеĿոñÄÚ£»È»ºó°´ÕÕ¡°ÈÎÒâÒ»¸ñµÄÊýÊÇËüÉÏÃæÒ»¸ñµÄÊýÓëËü×ó±ßÒ»¸ñµÄÊýÖ®ºÍ¡±µÄ¹æÔòÌîдÆäËü¿Õ¸ñ£®
µÚ1ÁеÚ2ÁеÚ3ÁС­µÚnÁÐ
µÚ1ÐÐ111¡­1
µÚ2ÐÐq
µÚ3ÐÐq2
¡­¡­
µÚnÐÐqn-1
£¨1£©ÉèµÚ2ÐеÄÊýÒÀ´ÎΪB1£¬B2£¬¡­£¬Bn£¬ÊÔÓÃn£¬q±íʾB1+B2+¡­+BnµÄÖµ£»
£¨2£©ÉèµÚ3ÁеÄÊýÒÀ´ÎΪc1£¬c2£¬c3£¬¡­£¬cn£¬ÇóÖ¤£º¶ÔÓÚÈÎÒâ·ÇÁãʵÊýq£¬c1+c3£¾2c2£»
£¨3£©ÇëÔÚÒÔÏÂÁ½¸öÎÊÌâÖÐÑ¡ÔñÒ»¸ö½øÐÐÑо¿ £¨Ö»ÄÜÑ¡ÔñÒ»¸öÎÊÌ⣬Èç¹û¶¼Ñ¡£¬±»ÈÏΪѡÔñÁ˵ÚÒ»ÎÊ£©£®
¢ÙÄÜ·ñÕÒµ½qµÄÖµ£¬Ê¹µÃ£¨2£©ÖеÄÊýÁÐc1£¬c2£¬c3£¬¡­£¬cnµÄÇ°mÏîc1£¬c2£¬¡­£¬cm £¨m¡Ý3£©³ÉΪµÈ±ÈÊýÁУ¿ÈôÄÜÕÒµ½£¬mµÄÖµÓжàÉÙ¸ö£¿Èô²»ÄÜÕÒµ½£¬ËµÃ÷ÀíÓÉ£®
¢ÚÄÜ·ñÕÒµ½qµÄÖµ£¬Ê¹µÃÌîÍê±í¸ñºó£¬³ýµÚ1ÁÐÍ⣬»¹Óв»Í¬µÄÁ½ÁÐÊýµÄÇ°ÈýÏî¸÷×ÔÒÀ´Î³ÉµÈ±ÈÊýÁУ¿²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸