精英家教网 > 高中数学 > 题目详情

一个正方体的六个面上分别标有A,B,C,D,E,F,下图是正方体的两种不同放置,则与D面相对的面上的字母是________

F

解析试题分析:根据两个图形的字母,结合模型,可推断出来,A对面是C;B对面是E;则与D面相对的面上的字母是 F.
考点:本题主要考查正方体的几何特征,推理判断能力。
点评:简单题,结合模型作出判断。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

下面是空间线面位置关系中传递性的部分相关命题:
①与两条平行线中一条平行的平面必与另一条直线平行;
②与两条平行线中一条垂直的平面 必与另一条直线垂直;
③与两条垂直直线中一条平行的平面必与另一条直线垂直;
④与两条垂直直线中一条垂直的平面必与另一条直线平行;
⑤与两个平行平面中一个平行的直线必与另一个平面平行;
⑥与两个平行平面中一个垂直的直线必与另一个平面垂直;
⑦与两个垂直平面中一个平行的直线必与另一个平面垂直;
⑧与两个垂直平面中一个垂直的直线必与另一个平面平行.
其中正确的命题个数有________个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

空间直角坐标系中,已知A(1,0,2),B(1,-3,1),点P在z轴上,且|PA|=|PB|,则点P的坐标为         .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

将正方形ABCD沿对角线BD折成直二面角ABDC,有如下四个结论:
ACBD;     ②△ACD是等边三角形;
AB与平面BCD成60°的角;   ④ABCD所成的角是60°.
其中正确结论的序号是________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

正三棱锥P—ABC中,CM=2PM,CN=2NB,对于以下结论:

①二面角B—PA—C大小的取值范围是(,π);
②若MN⊥AM,则PC与平面PAB所成角的大小为
③过点M与异面直线PA和BC都成的直线有3条;
④若二面角B—PA—C大小为,则过点N与平面PAC和平面PAB都成的直线有3条.
正确的序号是         

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知直二面角α? ι?β,点A∈α,AC⊥ι,C为垂足,B∈β,BD⊥ι,D为垂足.若AB=2,AC=BD=1,则D到平面ABC的距离等于________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知一颗粒子等可能地落入如图所示的四边形ABCD内的任意位置,如果通过大量的实验发现粒子落入△BCD内的频率稳定在附近,那么点A和点C到直线BD的距离之比约为         

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

夹在的二面角内的一个球与二面角的两个面的切点到棱的距离都是6,则这个球的半径为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,在中,,延长,连接,若,且,则________.

查看答案和解析>>

同步练习册答案