精英家教网 > 高中数学 > 题目详情
15.一个几何体的三视图如图所示,则该几何体的表面积是(  )
A.$\frac{{9+\sqrt{3}}}{2}$B.5C.$\frac{{18+\sqrt{3}}}{4}$D.$4+\sqrt{2}$

分析 几何体为边长为1的正方体切去一个三棱锥得到的,共含有7个面.

解答 解:由三视图可知该几何体为边长为1的正方体切去一个三棱锥得到的,三棱锥的底面边长为正方体相邻三个面的对角线长,
剩余几何体有3个面为原正方体的面,有3个面为原正方体面的一半,有1个面为等边三角形,边长为原正方体的面对角线长.
∴几何体的表面积为1×3+$\frac{1}{2}×3$+$\frac{\sqrt{3}}{4}×$($\sqrt{2}$)2=$\frac{9+\sqrt{3}}{2}$.
故选A.

点评 本题考查了空间几何体的三视图和体积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.1B.21+$\sqrt{3}$C.3$\sqrt{3}$+12D.$\frac{3\sqrt{3}}{2}$+12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.一个三棱锥的三视图如图所示,则其体积是$\frac{4}{3}$;此三棱锥的最长棱的长度为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,那么$\overrightarrow{b}$•(2$\overrightarrow{a}$-$\overrightarrow{b}$)的值为(  )
A.-8B.-6C.0D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知抛物线C:y2=2px(p>0),过点A(12,0)作直线MN垂直x轴交抛物线于M、N两点,ME⊥ON于E,AE∥OM,O为坐标原点.
(Ⅰ)求p的值;
(Ⅱ)是否存在直线l与抛物线C交于G、H两点,且F(2,-2)是GH的中点.若存在求出直线l方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.椭圆$\frac{x^2}{25}+\frac{y^2}{16}=1$的左、右焦点分别为F1,F2,弦AB过F1,若△ABF2的内切圆周长为4,A、B两点的坐标分别为(x1,y1)和(x2,y2),则|y2-y1|的值为(  )
A.$\frac{\sqrt{5}}{3}$B.$\frac{10}{3}$C.$\frac{20}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知某几何体的三视图如图,根据图中标出的尺寸(单位cm),可得这个几何体的体积是$\frac{8}{3}$cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线C的焦点M,其准线与x轴的交点为K,过点K(-1,0)的直线l与C交于A,B两点,点A关于x轴的对称点为D.
(Ⅰ)证明:点F在直线BD上;
(Ⅱ)设$\overrightarrow{FA}$•$\overrightarrow{FB}$=$\frac{8}{9}$,求△BDK内切圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图所示程序框图,输出的结果是(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案