精英家教网 > 高中数学 > 题目详情
12.我州某高中一研究性学习小组,在某一告诉公路服务区进行社会实践活动,从小型汽车中按进服务区的先后,每间隔5辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段:[70,75),[75,80),[80,85),[85,90),[90,95),[95,100),统计后得到如图的频率分布直方图.
(1)此研究性学习小组在采样中,用到的是什么抽样方法?并求这40辆小型汽车车速的众数和中位数的估计值;
(2)若从车速在[70,80)的车辆中任抽取2辆,求车速在[75,80)的车辆数X的数学期望.

分析 (1)每间隔5辆就抽取一辆的抽样方法抽取样本数据,符合系统抽样的特征,可得用到的抽样方法是系统抽样;
由小矩形最高的是[85,90)组,可得样本数据的众数为$\frac{85+90}{2}$,0.01×5+0.02×5+0.04×5=0.35<0.5,设0.01×5+0.02×5+0.04×5+0.06×m=0.5,解得m.
(2)车速在[70,80)的车辆共有6辆,车速在[70,75)和[75,80)的车辆分别有2辆和4辆,若从车速在[70,80)的车辆中任意抽取3辆,车速在[75,80)的车辆数为x,则x的可能取值为1,2,3,利用超几何分布列计算公式即可得出.

解答 解:(1)∵每间隔5辆就抽取一辆的抽样方法抽取样本数据,符合系统抽样的特征,∴在采样中,用到的抽样方法是系统抽样;
∵小矩形最高的是[85,90)组,∴样本数据的众数为$\frac{85+90}{2}$=87.5.
∵0.01×5+0.02×5+0.04×5=0.35<0.5,设0.01×5+0.02×5+0.04×5+0.06×m=0.5,则m=2.5,
∴中位数的估计值为85+m=87.5;…(6分)
(2)车速在[70,80)的车辆共有6辆,车速在[70,75)和[75,80)的车辆
分别有2辆和4辆,若从车速在[70,80)的车辆中任意抽取3辆,车速在[75,80)的车辆数为x,则x的可能取值为1,2,3;
∴P(x=1)=$\frac{{∁}_{2}^{2}•{∁}_{4}^{1}}{{∁}_{6}^{3}}$=$\frac{1}{5}$,P(x=2)=$\frac{{∁}_{2}^{1}{∁}_{4}^{2}}{{∁}_{6}^{3}}$=$\frac{3}{5}$,
P(x=3)=$\frac{{∁}_{2}^{0}{∁}_{4}^{3}}{{∁}_{6}^{3}}$=$\frac{1}{5}$,
∴分布列为:

 X 1 2 3
 P $\frac{1}{5}$ $\frac{3}{5}$ $\frac{1}{5}$
∴车速在[75,80)的车辆数的数学期望为Ex=1×$\frac{1}{5}$+2×$\frac{3}{5}$+3×$\frac{1}{5}$=2.

点评 本题考查了频率分布直方图、超几何分布列计算公式及其数学期望,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.为了检测某种水果的农药残留,要求这种水果在进入市场前必须对每箱水果进行两轮检测,只有两轮检测都合格水果才能上市销售,否则不能销售.已知每箱这种水果第一轮检测不合格的概率为$\frac{1}{9}$,第二轮检测不合格的概率为$\frac{1}{10}$,每轮检测结果只有“合格”、“不合格”两种,且两轮检测是否合格相互之间没有影响.
(Ⅰ)求每箱水果不能上市销售的概率;
(Ⅱ)如果这种水果可以上市销售,则每箱水果可获利20元;如果这种水果不能上市销售,则每箱水果亏损30元(即获利为-30元).现有这种水果4箱,记这4箱水果获利的金额为X元,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,且PA=AD=2AB,点M,N分别在侧棱PD,PC上,且$\overrightarrow{PM}=\overrightarrow{MD}$.
(1)求证:平面AMN⊥平面PCD;
(2)若$\overrightarrow{PN}=2\overrightarrow{NC}$,求平面AMN与平面PAB所成锐角的二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若A={(a,c)|1≤a≤2,0≤c≤1,a,c∈R},则任取(a,c)∈A,关于x的方程ax2+2x+c=0有实根的概率为(  )
A.$\frac{1}{2}$B.$\frac{ln2}{2}$C.ln2D.1-ln2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy中,求曲线C1:5x2+8xy+4y2=1在矩阵M=$[\begin{array}{l}{1}&{2}\\{3}&{2}\end{array}]$对应的变换作用下得到的新曲线C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,三棱柱ABC-A1B1C1侧棱垂直于底面,AB=4,AC=BC=3,D为AB的中点.
(Ⅰ)求证:AC1∥平面B1CD
(Ⅱ) 若AB1⊥A1C,求二面角A1-CD-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=sin2x-2sin2x.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数y=f(x)在[-$\frac{π}{4}$,$\frac{π}{8}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=alnx+$\frac{{x}^{2}}{2}$-(a+1)x.
(Ⅰ)当a>0时,求函数f(x)的单调区间;
(Ⅱ)当a=-1时,证明$f(x)≥\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线C:y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线相交于M,N两点,且|MN|=8.
(1)求抛物线C的方程;
(2)设直线l为抛物线C有且只有一个公共点,且l∥MN,点P在直线l上运动,求$\overrightarrow{PM}$•$\overrightarrow{PN}$的最小值,并判断此时点P与以MN为直径的圆的位置关系.

查看答案和解析>>

同步练习册答案