精英家教网 > 高中数学 > 题目详情

【题目】为了研究家用轿车在高速公路上的车速情况,交通部门随机对50名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在30名男性驾驶员中,平均车速超过100km/h的有20人,不超过100km/h的有10人.在20名女性驾驶员中,平均车速超过100km/h的有5人,不超过100km/h的有15人.
(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关;

平均车速超过100km/h人数

平均车速不超过100km/h人数

合计

男性驾驶员人数

女性驾驶员人数

合计

(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为女性且车速不超过100km/h的车辆数为ζ,若每次抽取的结果是相互独立的,求ζ的分布列和数学期望.
参考公式: ,其中n=a+b+c+d.
参考数据:

P(K2≥k0

0.150

0.100

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】解:(Ⅰ)根据题意,填写列联表如下;

平均车数超过

人数

平均车速不超过

人数

合计

男性驾驶员人数

20

10

30

女性驾驶员人数

5

15

20

合计

25

25

50

计算K2= = ≈8.333>7.879,

所以有99.5%的把握认为平均车速超过100km/h与性别有关;

(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随即抽取1辆,

驾驶员为女性且车速不超过100km/h的车辆的概率为

所以ξ的可能取值为0,1,2,3,且ξ~B(3, ),

∴P(ξ=0)= =

P(ξ=1)= =

P(ξ=2)= =

P(ξ=3)= =

ξ的分布列为:

ξ

0

1

2

3

P

数学期望为


【解析】(Ⅰ)根据题意,填写列联表,计算观测值,对照临界值得出结论;(Ⅱ)根据样本估计总体的思想,求得从高速公路上行驶的大量家用轿车中随即抽取1辆,驾驶员为女性且车速不超过100km/h的车辆的概率,知ξ的可能取值,且ξ~B(3, ),

计算对应的概率,写出ξ的分布列,计算数学期望值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , a1=a,当n≥2时, =3n2an+S ,an≠0,n∈N*.
(1)求a的值;
(2)设数列{cn}的前n项和为Tn , 且cn=3n1+a5 , 求使不等式4Tn>S10成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P﹣ABCD的底面是一个正方形,PA⊥平面ABCD,PA=AB=2,E是棱PA的中点,则异面直线BE与AC所成角的余弦值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了展示中华汉字的无穷魅力,传递传统文化,提高学习热情,某校开展《中国汉字听写大会》的活动.为响应学校号召,2(9)班组建了兴趣班,根据甲、乙两人近期8次成绩画出茎叶图,如图所示(把频率当作概率).

(1)求甲、乙两人成绩的平均数和中位数;

(2)现要从甲、乙两人中选派一人参加比赛,从统计学的角度,你认为派哪位学生参加比较合适?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|﹣2|x+1|的最大值为k.
(1)求k的值;
(2)若a,b,c∈R, ,求b(a+c)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学随机选取了名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图,观察图中数据,完成下列问题.

)求的值及样本中男生身高在(单位:)的人数.

)假设用一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高.

)在样本中,从身高在(单位:)内的男生中任选两人,求这两人的身高都不低于的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;
(1)若∠BFD=90°,△ABD的面积为 ,求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数f(x)是定义在R上的偶函数,f(x+1)为奇函数,f(0)=0,当x∈(0,1]时,f(x)=log2x,则在区间(8,9)内满足方f(x)程f(x)+2=f( )的实数x为 (
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,角A、B、C所对的边分别为a,b,c,且 =
(1)求A
(2)求cosB+cosC的取值范围.

查看答案和解析>>

同步练习册答案