精英家教网 > 高中数学 > 题目详情

【题目】己知函数f(x)是定义在R上的偶函数,f(x+1)为奇函数,f(0)=0,当x∈(0,1]时,f(x)=log2x,则在区间(8,9)内满足方f(x)程f(x)+2=f( )的实数x为 (
A.
B.
C.
D.

【答案】D
【解析】解:∵f(x+1)为奇函数,即f(x+1)=﹣f(﹣x+1),即f(x)=﹣f(2﹣x).

当x∈(1,2)时,2﹣x∈(0,1),∴f(x)=﹣f(2﹣x)=﹣log2(2﹣x).

又f(x)为偶函数,即f(x)=f(﹣x),于是f(﹣x)=﹣f(﹣x+2),

即f(x)=﹣f(x+2)=f(x+4),故 f(x)是以4为周期的函数.

∵f(1)=0,∴当8<x≤9时,0<x﹣8≤1,f(x)=f(x﹣8)=log2(x﹣8).

由f( )=﹣1,f(x)+2=f( )可化为log2(x﹣8)+2=﹣1,得x=

故选:D.

由f(x+1)为奇函数,可得f(x)=﹣f(2﹣x).由f(x)为偶函数可得f(x)=f(x+4),故 f(x)是以4为周期的函数.当8<x≤9时,求得f(x)=f(x﹣8)=log2(x﹣8).由log2(x﹣8)+2=﹣1得x的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S= .现有周长为4+ 的△ABC满足sinA:sinB:sinC=( ﹣1): : ( +1),试用以上给出的公式求得△ABC的面积为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究家用轿车在高速公路上的车速情况,交通部门随机对50名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在30名男性驾驶员中,平均车速超过100km/h的有20人,不超过100km/h的有10人.在20名女性驾驶员中,平均车速超过100km/h的有5人,不超过100km/h的有15人.
(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关;

平均车速超过100km/h人数

平均车速不超过100km/h人数

合计

男性驾驶员人数

女性驾驶员人数

合计

(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为女性且车速不超过100km/h的车辆数为ζ,若每次抽取的结果是相互独立的,求ζ的分布列和数学期望.
参考公式: ,其中n=a+b+c+d.
参考数据:

P(K2≥k0

0.150

0.100

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过曲线C1 =1(a>0,b>0)的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,延长F1M交曲线C3:y2=2px(p>0)于点N,其中曲线C1与C3有一个共同的焦点,若|MF1|=|MN|,则曲线C1的离心率为(
A.
B. ﹣1
C. +1
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,已知椭圆 的左焦点为F,离心率为 ,过点F且垂直于长轴的弦长为
(I)求椭圆C的标准方程;
(Ⅱ)设点A,B分别是椭圆的左、右顶点,若过点P(﹣2,0)的直线与椭圆相交于不同两点M,N.
(i)求证:∠AFM=∠BFN;
(ii)求△MNF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下表:

1,

2,3,

4,5,6,7,

8,9,10,11,12,13,14,15,

……

问:(1)此表第n行的第一个数与最后一个数分别是多少?

(2)此表第n行的各个数之和是多少?

(3)2012是第几行的第几个数?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,Sn=2an+1 , 其中Sn为{an}的前n项和(n∈N*).
(Ⅰ)求S1 , S2及数列{Sn}的通项公式;
(Ⅱ)若数列{bn}满足 ,且{bn}的前n项和为Tn , 求证:当n≥2时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xoy中圆C的参数方程为 (α为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为
(1)求圆C的直角坐标方程及其圆心C的直角坐标;
(2)设直线l与曲线C交于A,B两点,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(﹣1,+∞)上的单调函数f(x),对于任意的x∈(﹣1,+∞),f[f(x)﹣xex]=0恒成立,则方程f(x)﹣f′(x)=x的解所在的区间是(
A.(﹣1,﹣
B.(0,
C.(﹣ ,0)
D.(

查看答案和解析>>

同步练习册答案