精英家教网 > 高中数学 > 题目详情

【题目】过曲线C1 =1(a>0,b>0)的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,延长F1M交曲线C3:y2=2px(p>0)于点N,其中曲线C1与C3有一个共同的焦点,若|MF1|=|MN|,则曲线C1的离心率为(
A.
B. ﹣1
C. +1
D.

【答案】D
【解析】解:设双曲线的右焦点为F2,则F2的坐标为(c,0)

因为曲线C1与C3有一个共同的焦点,所以y2=4cx

因为O为F1F2的中点,M为F1N的中点,所以OM为△NF1F2的中位线,

所以OM∥NF2

因为|OM|=a,所以|NF2|=2a

又NF2⊥NF1,|FF2|=2c 所以|NF1|=2b

设N(x,y),则由抛物线的定义可得x+c=2a,

∴x=2a﹣c

过点F1作x轴的垂线,点N到该垂线的距离为2a

由勾股定理 y2+4a2=4b2,即4c(2a﹣c)+4a2=4(c2﹣a2

得e2﹣e﹣1=0,

∴e=

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为 (t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.
(Ⅰ)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;
(Ⅱ)直线C3的极坐标方程为θ=α0 , 其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了展示中华汉字的无穷魅力,传递传统文化,提高学习热情,某校开展《中国汉字听写大会》的活动.为响应学校号召,2(9)班组建了兴趣班,根据甲、乙两人近期8次成绩画出茎叶图,如图所示(把频率当作概率).

(1)求甲、乙两人成绩的平均数和中位数;

(2)现要从甲、乙两人中选派一人参加比赛,从统计学的角度,你认为派哪位学生参加比较合适?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学随机选取了名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图,观察图中数据,完成下列问题.

)求的值及样本中男生身高在(单位:)的人数.

)假设用一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高.

)在样本中,从身高在(单位:)内的男生中任选两人,求这两人的身高都不低于的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;
(1)若∠BFD=90°,△ABD的面积为 ,求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温x(°C)与该小卖部的这种饮料销量y(杯),得到如下数据:

1月11日

1月12日

1月13日

1月14日

1月15日

平均气温x(°C)

9

10

12

11

8

销量y(杯)

23

25

30

26

21

(Ⅰ)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;
(Ⅱ)请根据所给五组数据,求出y关于x的线性回归方程 = x+
(Ⅲ)根据(Ⅱ)中所得的线性回归方程,若天气预报1月16日的白天平均气温7(°C),请预测该奶茶店这种饮料的销量.
(参考公式: = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数f(x)是定义在R上的偶函数,f(x+1)为奇函数,f(0)=0,当x∈(0,1]时,f(x)=log2x,则在区间(8,9)内满足方f(x)程f(x)+2=f( )的实数x为 (
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为 ,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2θ﹣2cosθ=0.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若(x+ n的展开式中各项的系数之和为81,且常数项为a,则直线y= x与曲线y=x2所围成的封闭区域面积为

查看答案和解析>>

同步练习册答案