精英家教网 > 高中数学 > 题目详情

三棱锥O-ABC中,OA、OB、OC两两垂直,OC=1,OA=x,OB=y,x+y=4,当三棱锥O-ABC的体积最大时,则异面直线AB和OC间的距离等于


  1. A.
    1
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    2
B
分析:由已知中三棱锥O-ABC中,OA、OB、OC两两互相垂直,OC=1,OA=x,OB=y,我们易得到三棱锥O-ABC体积的表达式,又由x+y=4,结合基本不等式,即可得到体积的最大值,在这个条件下求出两条异面直线的距离.
解答:∵x>0,y>0且x+y=4,
由基本不等式得:
xy≤=4
又∵OA、OB、OC两两互相垂直,OC=1,
∴三棱锥O-ABC体积V==
当且仅当x=y时等号成立,此时x=y=2
即OA=OB=2,
根据OA、OB、OC两两垂直,得到两条异面直线的距离是过O点在平面OAB上做AB的垂线,
在等腰直角三角形中得到垂线的长度是
故选B
点评:本题考查的知识点是棱锥的体积,其中根据基本不等式求出xy在体积取得最大值时对应的长度,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、如图,在三棱锥O-ABC中,三条棱OA,OB,OC两两垂直,且OA>OB>OC,分别经过三条棱OA,OB,OC作一个截面平分三棱锥的体积,截面面积依次为S1,S2,S3,则S1,S2,S3的大小关系为
S3<S2<S1

查看答案和解析>>

科目:高中数学 来源: 题型:

在Rt△OAB中,∠O=90°,则 cos2A+cos2B=1.根据类比推理的方法,在三棱锥O-ABC中,OA⊥OB,OB⊥OC,OC⊥OA,α、β、γ 分别是三个侧面与底面所成的二面角,则
cos2α+cos2β+cos2γ=1
cos2α+cos2β+cos2γ=1

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥O-ABC中,三条棱OA,OB,OC两两互相垂直,且OA=OB=OC,M是AB边的中点,则OM与平面ABC所成角的正切值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄冈模拟)在三棱锥O-ABC中,三条棱OA、OB、OC两两相互垂直,且OA>OB>OC,分别过OA、OB、OC作一个截面平分三棱锥的体积,截面面积依次为S1,S2,S3,则S1,S2,S3中的最小值是
S3
S3

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面几何里,已知直角三角形ABC中,角C为90°,AC=b,BC=a,运用类比方法探求空间中三棱锥的有关结论:
有三角形的勾股定理,给出空间中三棱锥的有关结论:
在三棱锥O-ABC中,若三个侧面两两垂直,则
S
2
△OAB
+
S
2
△OAC
+
S
2
△OBC
=
S
2
△ABC
在三棱锥O-ABC中,若三个侧面两两垂直,则
S
2
△OAB
+
S
2
△OAC
+
S
2
△OBC
=
S
2
△ABC

若三角形ABC的外接圆的半径为r=
a2+b2
2
,给出空间中三棱锥的有关结论:
在三棱锥O-ABC中,若三个侧面两两垂直,且三条侧棱长分别为a,b,c,则其外接球的半径为r=
a2+b2+c2
2
在三棱锥O-ABC中,若三个侧面两两垂直,且三条侧棱长分别为a,b,c,则其外接球的半径为r=
a2+b2+c2
2

查看答案和解析>>

同步练习册答案