精英家教网 > 高中数学 > 题目详情

奇函数f(x)、偶函数g(x)的图象分别如图1、2所示,方程f(g(x))=0、g(f(x))=0的实根个数分别为a、b,则a+b=


  1. A.
    14
  2. B.
    10
  3. C.
    7
  4. D.
    3
B
分析:先利用奇函数和偶函数的图象性质判断两函数的图象,再利用图象由外到内分别解方程即可得两方程解的个数,最后求和即可
解答:由图可知,图1为f(x)图象,图2为g(x)的图象,m∈(-2,-1),n∈(1,2)
∴方程f(g(x))=0?g(x)=-1或g(x)=0或g(x)=1?x=-1,x=1,x=m,x=0,x=n,x=-2,x=2,∴方程f(g(x))=0有7个根,即a=7;
而方程g(f(x))=0?f(x)=a或f(x)=0或f(x)=b?f(x)=0?x=-1,x=0,x=1,∴方程g(f(x))=0 有3个根,即b=3
∴a+b=10
故选 B
点评:本题主要考查了函数奇偶性的图象性质,利用函数图象解方程的方法,数形结合的思想方法,属基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数函f(x)=x|x|-2x  (x∈R)
(1)判断函数的奇偶性,并用定义证明;
(2)作出函数f(x)=x|x|-2x的图象;
(3)讨论方程x|x|-2x=a根的情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•宝山区二模)已知f(x)=
10x+a10x+1
是奇函数.
(1)求a的值;
(2)求f(x)的反函 数 f-1(x),判断f-1(x)的奇偶性,并给予证明;
(3)若函数y=F(x)是以2为周期的奇函数,当x∈(-1,0)时,F(x)=f-1(x),求x∈(2,3)时F(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下表为函数f(x)=ax3+cx+d部分自变量取值及其对应函数值,为了便于研究,相关函数值取非整数值时,取值精确到0.01.
x -0.61 -0.59 -0.56 -0.35 0 0.26 0.42 1.57 3.27
y 0.07 0.02 -0.03 -0.22 0 0.21 0.20 -10.04 -101.63
根据表中数据,研究该函数的一些性质:
(1)判断f(x)的奇偶性,并证明;
(2)判断f(x)在[0.55,0.6]上是否存在零点,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数函f(x)=x|x|-2x (x∈R)
(1)判断函数的奇偶性,并用定义证明;
(2)作出函数f(x)=x|x|-2x的图象;
(3)讨论方程x|x|-2x=a根的情况.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=数学公式是奇函数.
(1)求a的值;
(2)求f(x)的反函 数 f-1(x),判断f-1(x)的奇偶性,并给予证明;
(3)若函数y=F(x)是以2为周期的奇函数,当x∈(-1,0)时,F(x)=f-1(x),求x∈(2,3)时F(x)的表达式.

查看答案和解析>>

同步练习册答案