精英家教网 > 高中数学 > 题目详情
设双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
,点A、B分别为双曲线C实轴的左端点和虚轴的上端点,点F1、F2分别为双曲线C的左、右焦点,点M、N是双曲线C的右支上不同两点,点Q为线段MN的中点.已知在双曲线C上存在一点P,使得
PA
+
PB
+
PF2
=(
3
-3)
OP

(Ⅰ)求双曲线C的离心率;
(Ⅱ)设a为正常数,若点Q在直线y=2x上,求直线MN在y轴上的截距的取值范围.
分析:(Ⅰ)由题设知c=
a2+b2
OA
+
OB
+
OF2
=
3
OP
.设点P(x0,y0
(c-a)2
3a2
-
b2
3b2
=1
,则有x0=
1
3
(c-a)
y0=
b
3
.由此推导出c=3a,可得离心率;
(Ⅱ)由题意知c=3a,则b2=c2-a2=8a2.若MN⊥x轴,则Q在x轴上,不合题意.设直线MN的方程为y=kx+m,代入
x2
a2
-
y2
8a2
=1
,得8x2-(kx+m)2=8a2,即(8-k2)x2-2kmx-m2-8a2=0.若k2=8,则MN与双曲线C的渐近线平行,不合题意.设点M(x1,y1),N(x2,y2),Q(x0,y0),由根与系数的关系能够推导出直线MN在y轴上的截距的取值范围.
解答:解:(Ⅰ)由题设,点A(-a,0),B(0,b),F1(-c,0),F2(c,0),其中c=
a2+b2
.(1分)
因为
PA
+
PB
+
PF2
=(
3
-3)
OP
,则
OA
+
OB
+
OF2
=
3
OP

设点P(x0,y0
(c-a)2
3a2
-
b2
3b2
=1

,则(-a+c,b)=
3
(x0y0)
,所以x0=
1
3
(c-a)
y0=
b
3
.(3分)
因为点P在双曲线
x2
a2
-
y2
b2
=1
上,所以,即(c-a)2=4a2.(4分)
因为c>a,所以c-a=2a,即c=3a,故离心率e=
c
a
=3
.(6分)
(Ⅱ)由(Ⅰ)知c=3a,则b2=c2-a2=8a2.(7分)
若MN⊥x轴,则Q在x轴上,不合题意.
设直线MN的方程为y=kx+m,代入
x2
a2
-
y2
8a2
=1
,得8x2-(kx+m)2=8a2,即(8-k2)x2-2kmx-m2-8a2=0.(*)(9分)
若k2=8,则MN与双曲线C的渐近线平行,不合题意.
设点M(x1,y1),N(x2,y2),Q(x0,y0),则x1+x2=
2km
8-k2
x0=
x1+x2
2
=
km
8-k2
y0=kx0+m=
8m
8-k2
.(10分)
若点Q在直线y=2x上,则
8m
8-k2
=
2km
8-k2

因为点M、N在双曲线的右支上,所以m≠0,从而k=4.(11分)
此时,方程(*)可化为8x2+8mx+m2+8a2=0.
由△=82m2-4×8(m2+8a2)>0,得m2>8a2.(12分)
又M、N在双曲线C的右支上,则x1+x2=-m>0,所以m<-2
2
a

故直线MN在y轴上的截距的取值范围是(-∞,-2
2
a)
.(13分)
点评:本题考查直线和圆锥曲线的位置关系,解题时要注意公式的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设双曲线C:
x2
a2
-
y2
b2
=1
的右焦点为F2,过点F2的直线l与双曲线C相交于A,B两点,直线l的斜率为
35
,且
AF2
=2
F2B

(1)求双曲线C的离心率;
(2)如果F1为双曲线C的左焦点,且F1到l的距离为 
2
35
3
,求双曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)设双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的离心率为e,若准线l与两条渐近线相交于P、Q两点,F为右焦点,△FPQ为等边三角形.
(1)求双曲线C的离心率e的值;
(2)若双曲线C被直线y=ax+b截得的弦长为
b2e2
a
求双曲线c的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线C:
x2
a2
-y2=1 (a>0) 与直线 l:x+y=1
相交于两个不同的点A、B.
(1)求a的取值范围:(2)设直线l与y轴的交点为P,且
PA
=
5
12
PB
.求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闵行区一模)设双曲线C:
x2
a2
-
y2
b2
=1(a,b>0),R1,R2是它实轴的两个端点,l是其虚轴的一个端点.已知其一条渐近线的一个方向向量是(1,
3
),△lR1R2的面积是
3
,O为坐标原点,直线y=kx+m(k,m∈R)与双曲线C相交于A、B两点,且
OA
OB

(1)求双曲线C的方程;
(2)求点P(k,m)的轨迹方程,并指明是何种曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闵行区一模)设双曲线C:
x2
a2
-
y2
b2
=1(a,b>0)
的虚轴长为2
3
,渐近线方程是y=±
3
x
,O为坐标原点,直线y=kx+m(k,m∈R)与双曲线C相交于A、B两点,且
OA
OB

(1)求双曲C的方程;
(2)求点P(k,m)的轨迹方程.

查看答案和解析>>

同步练习册答案