精英家教网 > 高中数学 > 题目详情
已知△ABC的两个顶点B,C在平面α内,若三角形的三条高线的交点H在平面α内,则三角形的顶点A
 
(填“是”或“否”)在平面α上.
考点:进行简单的演绎推理
专题:空间位置关系与距离
分析:利用不共线的三点确定一个平面即可判断出.
解答: 解:∵三点B,C,H不共线,
∴此三点确定一个平面β,而A∈β及β与α重合.
∴A∈α.
故答案为:是.
点评:本题考查了公理2的应用,考查了演绎推理,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

菲特台风重创宁波,志愿者纷纷前往灾区救援.现从四男三女共7名志愿者中任选2名(每名志愿者被选中的机会相等),则2名都是女志愿者的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1的侧棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1的中点,
F是AB的中点,AC=BC=1,AA1=2.
(Ⅰ)求证:CF∥平面AB1E;
(Ⅱ)求三棱锥C-AB1E在底面AB1E上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,E是BB1的中点,O是底面正方形ABCD的中心.求证:OE⊥平面ACD1

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中 已知椭圆C:
x2
4
+
y2
3
=1上一点P(1,
3
2
),过点P的直线l1,l2与椭圆C分别交于点A、B,且他们的斜率k1,k2满足k1.k2=-
3
4
,求证:
(1)直线AB过定点;
(2)求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a,b,c,d成等比数列,且对函数y=ln(x+2)-x,当x=b时取到极大值c,则ad=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx且f(2)=0,方程f(x)-1=0有两个相等的实数根.
(1)求函数f(x)的解析式;
(2)用定义证明f(x)在[1,+∞)上是减函数;
(3)当x∈[-
1
2
3
2
]时,利用图象求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

作出y=
1
x
+2的函数图象,并求出其单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的内角A,B,C的对边分别为a,b,c,b=5,c=7,a=3
2

(1)求cosA的大小
(2)△ABC面积的大小.

查看答案和解析>>

同步练习册答案