精英家教网 > 高中数学 > 题目详情
12.如图,已知直三棱柱ABC-A1B1C1中,AA1=AB=AC,AB⊥AC,M,N,Q分别是CC1,BC,AC的中点,点P在线段A1B1上运动.
(Ⅰ)证明:无论点P在线段A1B1上的任何位置,总有AM⊥平面PNQ;
(Ⅱ)若AC=1,试求三棱锥P-MNQ的体积.

分析 (Ⅰ)建立空间直角坐标系,设出棱长,得到点的坐标,由向量数量积证得答案;
(Ⅱ)把三棱锥P-MNQ的体积转化为A1-MNQ的体积,即N-A1MQ的体积,则三棱锥P-MNQ的体积可求.

解答 (Ⅰ)证明:建立如图所示的空间直角坐标系,设AA1=AB=AC=a,
则A(0,0,0),M(0,a,$\frac{a}{2}$),N($\frac{a}{2}$,$\frac{a}{2}$,0),Q(0,$\frac{a}{2}$,0),
A1(0,0,a),B1(a,0,a),
再设P(x,0,a),由A1P=λA1B1,得$\overrightarrow{{A}_{1}P}$=λ$\overrightarrow{{A}_{1}{B}_{1}}$,
即(x,0,0)=λ(a,0,0),即x=λa,
∴P(λa,0,a),
∵$\overrightarrow{PN}$=($\frac{a}{2}-λa,\frac{a}{2},-a$),$\overrightarrow{PQ}$=(-λa,$\frac{a}{2}$,-a),$\overrightarrow{AM}$=(0,a,$\frac{a}{2}$),
∴$\overrightarrow{AM}$•$\overrightarrow{PN}$=0,$\overrightarrow{AM}$•$\overrightarrow{PQ}$=0,则AM⊥平面PNQ;
(Ⅱ)设P点到平面MNQ的距离为h,由A1B1∥AB∥NQ,可得A1B1∥平面MNQ,
∴动点P到平面MNQ的距离为定值,
由VP-MNQ=${V}_{{A}_{1}-MNQ}$=${V}_{N-{A}_{1}QM}$,${S_{△{A_1}MQ}}=\frac{3}{8},NQ=\frac{1}{2}$,${V_{P-MNQ}}=\frac{1}{16}$.

点评 利用向量知识解决立体几何问题的优点在于用代数化的方法解决立体几何,解题的关键在于用坐标表示空间向量,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.解答下列问题:
(1)设向量$\overrightarrow{a}$=(1,2)与|$\overrightarrow{b}$|=3$\sqrt{5}$,且$\overrightarrow{a}$与$\overrightarrow{b}$方向相反,求$\overrightarrow{b}$的坐标;
(2)设方程(x-k)2+(y-1)2=-k2+k+2表示圆,求实数k的取值区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在数列{an}中,若存在非零整数T,使得am+T=am对于任意的正整数m均成立,那么称数列{an}为周期数列,其中T叫做数列{an}的周期.若数列{xn}满足xn+1=|xn-xn-1|(n≥2,n∈N),如x1=1,x2=a(a∈R,a≠0),当数列{xn}的周期最小时,该数列的前2015项的和是(  )
A.671B.672C.1342D.1344

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知k∈R,函数f(x)=lnx-kx.
(Ⅰ)若k>0,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,在直三棱柱ABC-A1B1B1中,∠BAC=90°,AB=AC=AA1=1,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA1
(1)求证:CD=C1D.
(2)求二面角A-A1D-B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知实数x,y满足平面区域$D:\left\{\begin{array}{l}x+y-1≥0\\ 2x-y-2≤0\\ x-2y+2≥0\end{array}\right.$,则x2+y2的最大值为(  )
A.$\frac{1}{2}$B.1C.$2\sqrt{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,在正四棱柱(底面是正方形的直棱柱)ABCD-A1B1C1D1中,E是BC的中点,F是C1D的中点,P是棱CC1所在直线上的动点.则下列四个命题:
①CD⊥PE②EF∥平面ABC1③${V_{P-{A_1}D{D_1}}}={V_{{D_1}-ADE}}$
④过P可做直线与正四棱柱的各个面都成等角.
其中正确命题的序号是①②③④(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.一个直六棱柱的底面是边长为2的正六边形,侧棱长为3,则它的外接球的表面积为25π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若a>0且a≠1,函数y=ax-3+1的反函数图象一定过点A,则A的坐标是(  )
A.(1,0)B.(0,1)C.(2,3)D.(3,2)

查看答案和解析>>

同步练习册答案