精英家教网 > 高中数学 > 题目详情

【题目】甲与乙午觉醒来后,发现自己的手表因故停止转动,于是他们想借助收音机,利用电台整点报时确认时间.

(1)求甲等待的时间不多于10分钟的概率;

(2)求甲比乙多等待10分钟以上的概率.

【答案】(1) (2)

【解析】

1)直接由几何概型中的长度型概率计算公式求解。

2)设甲需要等待的时间为,乙需要等待的时间为,由已知列不等式组,利用几何概型中的面积型概率计算公式求解。

解:(1)因为电台每隔1小时报时一次,

甲在之间任何一个时刻打开收音机是等可能的,

所以他在哪个时间段打开收音机的概率只与该时间段的长度有关,

而与该时间段的位置无关,符合几何概型的条件.

设事件为“甲等待的时间不多于10分钟”,

则事件恰好是打开收音机的时刻位于时间段内,

因此由几何概型的概率公式得

所以“甲等待的时间不多于10分钟“的概率为.

(2)因为甲、乙两人起床的时间是任意的,

所以所求事件是一个与两个变量相关的几何概型,且为面积型.

设甲需要等待的时间为,乙需要等待的时间为(10分钟为一个长度单位).

则由已知可得,对应的基本事件空间为.

甲比乙多等待10分钟以上对应的事件为.

在平面直角坐标系中作出两个不等式组所表示的平面区域,如图所示.

显然表示一个边长为6的正方形的内部及线段

其面积.表示的是腰长为5的等腰直角三角形的内部及线段

其面积,故所求事件的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点为,离心率为.

(1)求椭圆的标准方程;

(2)若动点为椭圆外一点,且点到椭圆的两条切线相互垂直,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有两位射击运动员在一次射击测试中各射靶7次,每次命中的环数如下:

甲 7 8 10 9 8 8 6 乙 9 10 7 8 7 7 8

则下列判断正确的是(  )

A. 甲射击的平均成绩比乙好 B. 甲射击的成绩的众数小于乙射击的成绩的众数

C. 乙射击的平均成绩比甲好 D. 甲射击的成绩的极差大于乙射击的成绩的极差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一位数学老师在黑板上写了三个向量,其中都是给定的整数.老师问三位学生这三个向量的关系,甲回答:“平行,且垂直”,乙回答:“平行”,丙回答:“不垂直也不平行”,最后老师发现只有一位学生判断正确,由此猜测的值不可能为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,程序框图(算法流程图)的输出结果是(

A.34
B.55
C.78
D.89

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型水果超市每天以元/千克的价格从水果基地购进若干水果,然后以元/千克的价格出售,若有剩余,则将剩下的水果以元/千克的价格退回水果基地,为了确定进货数量,该超市记录了水果最近天的日需求量(单位:千克),整理得下表:

日需求量

频数

天记录的各日需求量的频率代替各日需求量的概率.

(1)求该超市水果日需求量(单位:千克)的分布列;

(2)若该超市一天购进水果千克,记超市当天水果获得的利润为(单位:元),求的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家边防安全条例规定:当外轮与我国海岸线的距离小于或等于海里时,就会被警告.如图,设是海岸线上距离海里的两个观察站,满足,一艘外轮在点满足.

(1)满足什么关系时,就该向外轮发出警告令其退出我国海域?

(2)当时,间处于什么范围内可以避免使外轮进入被警告区域?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益(单位:万元)绘制成如图所示的频率分布直方图.由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的.

广告投入/万元

1

2

3

4

5

销售收益/万元

2

3

2

5

7

(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;

(Ⅱ)该公司按照类似的研究方法,测得另外一些数据,并整理得到上表:

表中的数据显示之间存在线性相关关系,求关于的回归方程;

(Ⅲ)若广告投入万元时,实际销售收益为万元,求残差.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据监测,在海滨某城市附近的海面有一台风. 台风中心位于城市的东偏南方向、距离城市的海面处,并以的速度向西偏北方向移动(如图示).如果台风侵袭范围为圆形区域,半径,台风移动的方向与速度不变,那么该城市受台风侵袭的时长为_____ .

查看答案和解析>>

同步练习册答案