【题目】甲与乙午觉醒来后,发现自己的手表因故停止转动,于是他们想借助收音机,利用电台整点报时确认时间.
(1)求甲等待的时间不多于10分钟的概率;
(2)求甲比乙多等待10分钟以上的概率.
【答案】(1) (2)
【解析】
(1)直接由几何概型中的长度型概率计算公式求解。
(2)设甲需要等待的时间为,乙需要等待的时间为,由已知列不等式组,利用几何概型中的面积型概率计算公式求解。
解:(1)因为电台每隔1小时报时一次,
甲在之间任何一个时刻打开收音机是等可能的,
所以他在哪个时间段打开收音机的概率只与该时间段的长度有关,
而与该时间段的位置无关,符合几何概型的条件.
设事件为“甲等待的时间不多于10分钟”,
则事件恰好是打开收音机的时刻位于时间段内,
因此由几何概型的概率公式得,
所以“甲等待的时间不多于10分钟“的概率为.
(2)因为甲、乙两人起床的时间是任意的,
所以所求事件是一个与两个变量相关的几何概型,且为面积型.
设甲需要等待的时间为,乙需要等待的时间为(10分钟为一个长度单位).
则由已知可得,对应的基本事件空间为.
甲比乙多等待10分钟以上对应的事件为.
在平面直角坐标系中作出两个不等式组所表示的平面区域,如图所示.
显然表示一个边长为6的正方形的内部及线段,,
其面积.表示的是腰长为5的等腰直角三角形的内部及线段,
其面积,故所求事件的概率为.
科目:高中数学 来源: 题型:
【题目】有两位射击运动员在一次射击测试中各射靶7次,每次命中的环数如下:
甲 7 8 10 9 8 8 6 乙 9 10 7 8 7 7 8
则下列判断正确的是( )
A. 甲射击的平均成绩比乙好 B. 甲射击的成绩的众数小于乙射击的成绩的众数
C. 乙射击的平均成绩比甲好 D. 甲射击的成绩的极差大于乙射击的成绩的极差
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一位数学老师在黑板上写了三个向量,,,其中,都是给定的整数.老师问三位学生这三个向量的关系,甲回答:“与平行,且与垂直”,乙回答:“与平行”,丙回答:“与不垂直也不平行”,最后老师发现只有一位学生判断正确,由此猜测,的值不可能为( )
A. , B. , C. , D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大型水果超市每天以元/千克的价格从水果基地购进若干水果,然后以元/千克的价格出售,若有剩余,则将剩下的水果以元/千克的价格退回水果基地,为了确定进货数量,该超市记录了水果最近天的日需求量(单位:千克),整理得下表:
日需求量 | |||||||
频数 |
以天记录的各日需求量的频率代替各日需求量的概率.
(1)求该超市水果日需求量(单位:千克)的分布列;
(2)若该超市一天购进水果千克,记超市当天水果获得的利润为(单位:元),求的分布列及其数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国家边防安全条例规定:当外轮与我国海岸线的距离小于或等于海里时,就会被警告.如图,设,是海岸线上距离海里的两个观察站,满足,一艘外轮在点满足,.
(1),满足什么关系时,就该向外轮发出警告令其退出我国海域?
(2)当时,间处于什么范围内可以避免使外轮进入被警告区域?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益(单位:万元)绘制成如图所示的频率分布直方图.由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的.
广告投入/万元 | 1 | 2 | 3 | 4 | 5 |
销售收益/万元 | 2 | 3 | 2 | 5 | 7 |
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)该公司按照类似的研究方法,测得另外一些数据,并整理得到上表:
表中的数据显示与之间存在线性相关关系,求关于的回归方程;
(Ⅲ)若广告投入万元时,实际销售收益为万元,求残差.
附:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据监测,在海滨某城市附近的海面有一台风. 台风中心位于城市的东偏南方向、距离城市的海面处,并以的速度向西偏北方向移动(如图示).如果台风侵袭范围为圆形区域,半径,台风移动的方向与速度不变,那么该城市受台风侵袭的时长为_____ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com