精英家教网 > 高中数学 > 题目详情
8.求证:$\frac{|a|+|b|}{1+|a|+|b|}$≥$\frac{|a+b|}{1+|a+b|}$.

分析 通过作差、利用|a|+|b|≥|a+b|,整理即得结论.

解答 证明:$\frac{|a|+|b|}{1+|a|+|b|}$-$\frac{|a+b|}{1+|a+b|}$
=$\frac{1}{(1+|a|+|b|)(1+|a+b|)}$[(|a|+|b|)(1+|a+b|)-(1+|a|+|b|)|a+b|]
=$\frac{1}{(1+|a|+|b|)(1+|a+b|)}$[|a|+|b|+|a+b|•|a|+|a+b|•|b|-(|a+b|+|a+b|•|a|+|a+b|•|b|)]
=$\frac{1}{(1+|a|+|b|)(1+|a+b|)}$(|a|+|b|-|a+b|)
≥0,
∴$\frac{|a|+|b|}{1+|a|+|b|}$≥$\frac{|a+b|}{1+|a+b|}$.

点评 本题考查不等式的证明,利用作差法是解决本题的关键,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,PA⊥平面ABC,∠ACB=90°,AB=$\sqrt{2}$,PA=BC=1,求二面角P-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在正方体ABCD-A1B1C1D1中,E,F,G,H分别是棱D1C1,B1C1,AB,AD的中点,求证:平面D1B1A∥平面EFGH.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在四棱锥P-ABCD中,∠ABC=$\frac{π}{2}$,∠BAC=∠CAD=$\frac{π}{3}$,PA⊥平面ABCD,E为PD的中点,PA=2AB=2,CD=2$\sqrt{3}$.
(1)若F为PC的中点,求证:平面PAC⊥平面AEF;
(2)求平面EAC与平面DAC夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设F2(c,0)(c>0)是双曲线Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,M是双曲线左支上的一点,线段MF2与圆x2+y2-$\frac{2c}{3}$x+$\frac{{a}^{2}}{9}$=0相切于D,且|MF2|=3|DF2|,则双曲线Γ的离心率为(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知F1、F2分别是双曲线x2-$\frac{{y}^{2}}{6}$=1的左、右焦点,点P为右支上一点,O为坐标原点,若向量($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)与$\overrightarrow{P{F}_{2}}$的夹角为120°,则点F2到直线PF1的距离为(  )
A.$\sqrt{3}$B.$\sqrt{7}$C.2$\sqrt{3}$D.$\sqrt{21}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合U={1,2,3,4},A={1},B={2,4},则A∪(∁UB)=(  )
A.{1}B.{3}C.{1,3}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x2+1)的定义域为[-1,1],则f(lgx)的定义域为(  )
A.[-1,1]B.[1,2]C.[10,100]D.[0,lg2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知1,2,3,4,5,6,六个数字,排成2行3列,且要求第一行的最大数比第二行的最大数要大,第一行的最小数要比第二行的最小数也要大,则所有的排列方法种数有(  )
A.144B.480C.216D.432

查看答案和解析>>

同步练习册答案