精英家教网 > 高中数学 > 题目详情
18.如图,PA⊥平面ABC,∠ACB=90°,AB=$\sqrt{2}$,PA=BC=1,求二面角P-BC-A的大小.

分析 结合已知条件由三垂线定理得PC⊥BC,从而∠ACP是二面角P-BC-A的平面角,由此能求出二面角P-BC-A的大小.

解答 解:∵PA⊥平面ABC,∠ACB=90°,
∴由三垂线定理得PC⊥BC,
∴∠ACP是二面角P-BC-A的平面角,
∵AB=$\sqrt{2}$,PA=BC=1,
∴$AC=\sqrt{A{B}^{2}-B{C}^{2}}$=$\sqrt{2-1}$=1,
∴∠ACP=45°,
∴二面角P-BC-A的大小为45°.

点评 本题考查二面角的大小的求法,是基础题,解题时要注意三垂线定理的合理运用,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,在长方形ABCD中,AB=2,AD=1,E为DC的中点,现将△DAE沿AE折起,使平面DAE⊥平面ABCE,连接DB,DC,BE.
(1)求证:BE⊥平面ADE;
(2)求二面角E-BD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ex,g(x)=x2-ax+1.
(Ⅰ)若函数y=f(x)+g(x)在区间[1,+∞)上单调递增,求实数a的取值范围;
(Ⅱ) 记h(x)=$\frac{f(x)}{g(x)}$,若$a∈[{0,\frac{1}{2}}]$,则当x∈[0,a+1]时,函数h(x)的图象是否总在不等式y>x所表示的平面区域内,请写出判断过程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知正三棱锥S-ABC的底面边长为a,各侧面的顶角为30°,D为侧棱SC的中点,截面△DEF过D且平行于AB,当△DEF周长最小时,则截得的三棱锥S-DEF的侧面积为$\frac{2+\sqrt{3}}{32}{a}^{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.正三棱锥P-ABC中,有一半球,某底面所在的平面与正三棱锥的底面所在平面重合,正三棱锥的三个侧面都与半球相切,如果半球的半径为2,则当正三棱锥的体积最小时,正三棱锥的高等于2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知△ABC的内角∠A、∠B、∠C所对的边分别为a、b、c,且∠A=$\frac{π}{3}$,若a=1,则△ABC的周长l的取值范围是(  )
A.(1,2)B.(1,3]C.(2,3]D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,已知P是边长为a的菱形ABCD所在平面外一点,∠ABC=60°,PC⊥平面ABCD,PC=a,E为PA的中点.
(1)求证:平面EDB⊥平面ABCD;
(2)求二面角A-EB-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某几何体的三视图如图所示,则该几何体的表面积为19+$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求证:$\frac{|a|+|b|}{1+|a|+|b|}$≥$\frac{|a+b|}{1+|a+b|}$.

查看答案和解析>>

同步练习册答案