精英家教网 > 高中数学 > 题目详情

【题目】已知两点M(1, ),N(﹣4,﹣ ),给出下列曲线方程:
①4x+2y﹣1=0;
②x2+y2=3;
+y2=1;
﹣y2=1.
在曲线上存在点P满足|MP|=|NP|的所有曲线方程是(
A.①③
B.②④
C.①②③
D.②③④

【答案】D
【解析】解:要使这些曲线上存在点P满足|MP|=|NP|,需曲线与MN的垂直平分线相交. MN的中点坐标为(﹣ ,0),MN斜率为 = ∴MN的垂直平分线为y=﹣2(x+ ),∵①4x+2y﹣1=0与y=﹣2(x+ ),斜率相同,两直线平行,可知两直线无交点,进而可知①不符合题意.②x2+y2=3与y=﹣2(x+ ),联立,消去y得5x2﹣12x+6=0,△=144﹣4×5×6>0,可知②中的曲线与MN的垂直平分线有交点,③中的方程与y=﹣2(x+ ),联立,消去y得9x2﹣24x﹣16=0,△>0可知③中的曲线与MN的垂直平分线有交点,④中的方程与y=﹣2(x+ ),联立,消去y得7x2﹣24x+20=0,△>0可知④中的曲线与MN的垂直平分线有交点,
故选D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:对于任意n∈N*且n≥2时,an+λan﹣1=2n+1,a1=4.
(1)若 ,求证:{an﹣3n}为等比数列;
(2)若λ=﹣1.①求数列{an}的通项公式; ②是否存在k∈N*,使得 +25为数列{an}中的项?若存在,求出所有满足条件的k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 已知2Sn=3n+3.
(1)求{an}的通项公式;
(2)若数列{bn},满足anbn=log3an , 求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,且an+1﹣an=2n , n∈N* , 若 +19≤3n对任意n∈N*都成立,则实数λ的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图的程序框图表示的算法中,输入三个实数a,b,c,要求输出的x是这三个数中最大的数,那么在空白的判断框中,应该填入(

A.x>c
B.c>x
C.c>b
D.c>a

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,sinA=sinBsinC,则tanB+2tanC的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1的左右焦点分别为F1 , F2 , 则在椭圆C上满足∠F1PF2= 的点P的个数有(
A.0个
B.1个
C.2 个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.
(1)求曲线C的方程;
(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有 <0?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,侧面A1ADD1⊥底面ABCD,D1A=D1D= ,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.

(1)求证:A1O∥平面AB1C;
(2)求锐二面角A﹣C1D1﹣C的余弦值.

查看答案和解析>>

同步练习册答案