精英家教网 > 高中数学 > 题目详情

【题目】某企业开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名技术人员,将他们随机分成两组,每组20人,第一组技术人员用第一种生产方式,第二组技术人员用第二种生产方式.根据他们完成生产任务的工作时间(单位:min)绘制了如下茎叶图:

(1)求40名技术人员完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的人数填入下面的列联表:

超过

不超过

合计

第一种生产方式

第二种生产方式

合计

(2)根据(1)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?

附:

P(K2k0)

0.050

0.010

0.001

k0

3.841

6.635

1.828

【答案】(1)详见解析;(2)有99%的把握认为两种生产方式的效率有差异.

【解析】

1)根据茎叶图中的数据可得中位数的值,然后分析图中的数据可完成列联表.(2)由列联表中的数据求出,然后结合所给数据得到结论.

(1)由茎叶图知

即40名技术人员完成生产任务所需时间的中位数为80.

由题意可得列联表如下:

超过

不超过

合计

第一种生产方式

15

5

20

第二种生产方式

5

15

20

合计

20

20

40

2)由列联表中的数据可得

所以有99%的把握认为两种生产方式的效率有差异.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如图,则下面结论中错误的一个是(  )

A. 甲的极差是29 B. 甲的中位数是24

C. 甲罚球命中率比乙高 D. 乙的众数是21

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中随机抽取部分高一学生调查其上学路上所需时间频(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是,样本数据分组为.

(1)求直方图中的值;

(2)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生 1200名请估计新生中有多少名学生可以申请住宿;

(3)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于 40分钟的人数记为,求的分布列和数学期望.(以直方图中的频率作为概率).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天水市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,

规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,

得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.


优秀

非优秀

合计

甲班

10



乙班


30


合计



110

1)请完成上面的列联表;

2)根据列联表的数据,若按99.9%的可靠性要求,能否认为成绩与班级有关系

3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从211进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。

参考公式与临界值表:


0.100

0.050

0.025

0.010

0.001


2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线恒过定点.

若直线经过点且与直线垂直,求直线的方程;

若直线经过点且坐标原点到直线的距离等于3,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列,其前项和为,满足,其中.

⑴若),求证:数列是等比数列;

⑵若数列是等比数列,求的值;

⑶若,且,求证:数列是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z满足|z|z的实部大于0z2的虚部为2.

1)求复数z

2)设复数zz2zz2之在复平面上对应的点分别为ABC,求(的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求满足下列条件的椭圆或双曲线的标准方程:

(1)椭圆的焦点在轴上,焦距为4,且经过点

(2)双曲线的焦点在轴上,右焦点为,过作重直于轴的直线交双曲线于两点,且,离心率为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直棱柱的底面是边长为4的菱形,且,侧棱长为6, ,点分别是线段的中点.

(1)证明: 平面

(2)求二面角.

查看答案和解析>>

同步练习册答案