【题目】已知数列,其前项和为,满足,,其中,,,.
⑴若,,(),求证:数列是等比数列;
⑵若数列是等比数列,求,的值;
⑶若,且,求证:数列是等差数列.
【答案】(1)见解析(2)(3)见解析
【解析】试题分析:(1)(), 所以,故数列是等比数列;(2)利用特殊值法,得,故;(3)得,所以,得,可证数列是等差数列.
试题解析:
(1)证明:若,则当(),
所以,
即,
所以,
又由,,
得,,即,
所以,
故数列是等比数列.
(2)若是等比数列,设其公比为( ),
当时,,即,得
, ①
当时,,即,得
, ②
当时,,即,得
, ③
②①,得 ,
③②,得 ,
解得.
代入①式,得.
此时(),
所以,是公比为1的等比数列,
故.
(3)证明:若,由,得,
又,解得.
由,, ,,代入得,
所以,,成等差数列,
由,得,
两式相减得:
即
所以
相减得:
所以
所以
,
因为,所以,
即数列是等差数列.
科目:高中数学 来源: 题型:
【题目】(本小题满分16分)
已知数列{an}的前n项和为Sn,且a1=1,Sn=n2an(n∈N*).
(1)试求出S1,S2,S3,S4,并猜想Sn的表达式;
(2)用数学纳法证明你的猜想,并求出an的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(数学文卷·2017届湖北省黄冈市高三上学期期末考试第16题) “中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”. “中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列,则此数列的项数为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体ABCDEF中,ABCD是正方形,BF⊥平面ABCD,DE⊥平面ABCD,BF=DE,点M为棱AE的中点.
(1)求证:平面BMD∥平面EFC;
(2)若AB=1,BF=2,求三棱锥A-CEF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名技术人员,将他们随机分成两组,每组20人,第一组技术人员用第一种生产方式,第二组技术人员用第二种生产方式.根据他们完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
(1)求40名技术人员完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的人数填入下面的列联表:
超过 | 不超过 | 合计 | |
第一种生产方式 | |||
第二种生产方式 | |||
合计 |
(2)根据(1)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?
附:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 1.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在某商业区周边有 两条公路和,在点处交汇,该商业区为圆心角,半径3的扇形,现规划在该商业区外修建一条公路,与,分别交于,要求与扇形弧相切,切点不在,上.
(1)设试用表示新建公路的长度,求出满足的关系式,并写出的范围;
(2)设,试用表示新建公路的长度,并且确定的位置,使得新建公路的长度最短.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数y=f(x)对定义域内的每一个值x1,在其定义域内都存在唯一的x2,使f(x1)f(x2)=1成立,则称该函数为“依赖函数”.
(1) 判断函数g(x)=2x是否为“依赖函数”,并说明理由;
(2) 若函数f(x)=(x–1)2在定义域[m,n](m>1)上为“依赖函数”,求实数m、n乘积mn的取值范围;
(3) 已知函数f(x)=(x–a)2 (a<)在定义域[,4]上为“依赖函数”.若存在实数x[,4],使得对任意的tR,有不等式f(x)≥–t2+(s–t)x+4都成立,求实数s的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列语句是否为命题?如果是,判断它的真假.
(1)这道数学题有趣吗?(2)0不可能不是自然数;(3);(4);
(5)91不是素数;(6)上海的空气质量越来越好.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com