精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx+
a
x
+b在点(1,3)处与y轴垂直.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)在[
1
2
,2]上的最大值和最小值.
考点:利用导数研究函数的极值,导数在最大值、最小值问题中的应用
专题:计算题,导数的综合应用
分析:(Ⅰ)求出函数的导数,由条件可得f′(1)=0且f(1)=3,即可得到a,b的值;
(Ⅱ)求出函数f(x)的导数,求出极值点,列表分析函数在[
1
2
,2]上的单调区间和极值,从而得到最小值和最大值.
解答: 解:(Ⅰ)由于f(x)=lnx+
a
x
+b,
f′(x)=
1
x
-
a
x2

f′(1)=0
f(1)=3
1-a=0
a+b=3

解得
a=1
b=2

(Ⅱ)由于f(x)=lnx+
1
x
+2

f′(x)=
1
x
-
1
x2
=
x-1
x2

由f'(x)=0⇒x=1,
列表如下
x
1
2
(
1
2
,1)

1
(1,2)
2
y'
-

0

+
y4-ln2
单调递减

极小值

单调递增
5
2
+ln2
当x=1时,f(x)取得极小值即最小值:f(x)min=f(1)=3,
由于f(
1
2
)-f(2)=
3
2
-2ln2=lne
3
2
-ln4=ln
e
3
2
4
>0

x=
1
2
时,f(x)取得最大值f(x)max=f(
1
2
)=4-ln2
点评:本题考查导数的综合应用:求切线方程和求单调区间、极值和最值,考查运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=xsin(2x-
π
2
)cos(2x+
π
2
)的导数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的方程sinx+
3
cosx+a=0 在[0,2π)内有两个相异的实数解α、β,求实数a的取值范围及α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

符号[x]表示不超过x的最大整数,如[π]=3,[-1.08]=-2,定义函数f(x)=x-[x],则  下列命题:
①函数f(x)的定义域为R,值域为[0,1]; 
②方程f(x)=
1
x
有无数多个解;
③函数f(x)是周期函数;
④函数f(x)是增函数.
其中正确的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(x-3)ex的单调递减区间是(  )
A、(-∞,2)
B、(0,3)
C、(1,4)
D、(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,A(1,2),点P(x,y)满足约束条件
x+|y|≤1
x≥0
,则Z=
OA
OP
的最大值为(  )
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,△ABC是边长为2的等边三角形,AA1⊥平面ABC,
D,E,I分别是CC1,AB,AA1的中点.
(1)求证:CE∥平面A1BD
(2)若H为A1B上的动点,CH与平面A1AB所成的最大角的正切值为
15
2
,求侧棱AA1的长.
(3)在(2)的条件下,求二面角I-BD-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知线性变换f对应的矩阵M=
02
1-1
,线性变换g对应的矩阵N的属于特征值λ=-1的一个特征向量
ξ
=
1
-1
,向量
α
=
1
2
在线性变换g作用下得到的像为
β
=
8
4

(1)求矩阵M的逆矩阵;
(2)求矩阵N;
(3)已知曲线C依次作线性变换f和g,得到曲线C′:x+5y+4=0,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示折线段ABC,其中A、B、C的坐标分别为(0,4),(2,0),(6,4).
(1)若一抛物线g(x)恰好过A,B,C三点,求g(x)的解析式.
(2)函数f(x)的图象刚好是折线段ABC,求f(f(0))的值和函数f(x)的解析式.

查看答案和解析>>

同步练习册答案