精英家教网 > 高中数学 > 题目详情
10.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如表):
零件数x(个)1020304050
加工时间y(分钟)6268758189
由最小二乘法求得回归方程 $\widehat{y}$=0.67x+a,则a的值为54.9.

分析 根据回归直线方程$\widehat{y}$=0.67x+a的图象过样本中心点($\overline{x}$,$\overline{y}$),求出平均数代入方程即可求出a的值.

解答 解:由题意,计算$\overline{x}$=$\frac{1}{5}$×(10+20+30+40+50)=30,
$\overline{y}$=$\frac{1}{5}$×(62+68+75+81+89)=75,
且回归直线方程 $\widehat{y}$=0.67x+a的图象过样本中心点($\overline{x}$,$\overline{y}$),
所以a=75-0.67×30=54.9.
故答案为:54.9.

点评 本题考查了回归直线方程的图象过样本中心点的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.解α的终边过点P(4,-3),则cosα的值为(  )
A.$\frac{4}{5}$B.$-\frac{3}{5}$C.4D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.图中曲线的方程可以是(  )
A.(x+y-1)•(x2+y2-1)=0B.$\sqrt{x+y-1}•({x^2}+{y^2}-1)=0$
C.$(x+y-1)•\sqrt{{x^2}+{y^2}-1}=0$D.$\sqrt{x+y-1}•\sqrt{{x^2}+{y^2}-1}=0$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a,b∈(0,+∞),且2a4b=2.
(Ⅰ)求$\frac{2}{a}+\frac{1}{b}$的最小值;
(Ⅱ)若存在a,b∈(0,+∞),使得不等式$|{x-1}|+|{2x-3}|≥\frac{2}{a}+\frac{1}{b}$成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数y=f(x),x∈R“y=|f(x)|是偶函数”是“y=f(x)的图象关于原点对称”的(  )
A.充分不必要条件B.充要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知x,y满足线性约束条件$\left\{\begin{array}{l}y-x≤3\\ x+y≤5\\ y≥λ\end{array}\right.$,若z=x+4y的最大值与最小值之差为5,则实数λ的值为(  )
A.3B.$\frac{7}{3}$C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为调查了解某省属师范大学师范类毕业生参加工作后,从事的工作与教育是否有关的情况,该校随机调查了该校80位性别不同的2016年师范类毕业大学生,得到具体数据如表:
与教育有关与教育无关合计
301040
35540
合计651580
(1)能否在犯错误的概率不超过5%的前提下,认为“师范类毕业生从事与教育有关的工作与性别有关”?
参考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
附表:
P(K2≥k00.500.400.250.150.100.050.0250.010
k00.4550.7081.3232.0722.7063.8415.0236.635
(2)求这80位师范类毕业生从事与教育有关工作的频率;
(3)以(2)中的频率作为概率.该校近几年毕业的2000名师范类大学生中随机选取4名,记这4名毕业生从事与教育有关的人数为X,求X的数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知定义在R上的偶函数f(x)在[0,+∞)上递减,且f(1)=0,则不等式f(log4x)+f(log$\frac{1}{4}$x)≥0的解集为[$\frac{1}{4}$,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设p:x<2,q:-2<x<2,则p是q成立的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案