精英家教网 > 高中数学 > 题目详情
6.已知正项等比数列{an}的前n项和为Sn,若-3,S5,S10成等差数列,则S15-S10的最小值为(  )
A.8B.9C.10D.12

分析 由题意可得S10-2S5=3,结合等比数列的性质得到$({S}_{10}-{S}_{5})^{2}={S}_{5}({S}_{15}-{S}_{10})$,把S15-S10转化为含有S5的代数式,然后利用基本不等式求得答案.

解答 解:由题意得2S5=-3+S10,∴S10-2S5=3.
由数列{an}为等比数列可知,S5,S10-S5,S15-S10成等比数列,
∴$({S}_{10}-{S}_{5})^{2}={S}_{5}({S}_{15}-{S}_{10})$,
S15-S10=$\frac{({S}_{10}-{S}_{5})^{2}}{{S}_{5}}=\frac{(2{S}_{5}+3-{S}_{5})^{2}}{{S}_{5}}$=$\frac{9}{{S}_{5}}+{S}_{5}+6≥12$.
当且仅当S5=3时上式“=”成立.
故选:D.

点评 本题是等差数列和等比数列的综合题,考查了等比数列的性质,训练了利用基本不等式求最值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知i为虚数单位,若复数z满足z•(-i)=2015+2016i,则$\overline{z}$为(  )
A.2015+2016iB.2015-2016iC.-2016+2015iD.-2016-2015i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知$α∈(\frac{π}{2},π)$,$sinα+cosα=-\frac{1}{5}$,则$tan(α+\frac{π}{4})$=$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.对如图,定义在[-1,+∞)上的函数f(x)的图象由一条线段及抛物线的一部分组成,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数$f(x)=\frac{{m•{{10}^x}+1}}{{{{10}^x}-1}}$为奇函数,则m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在平面直角坐标系xOy中,A(1,0),B(0,1),则点集{P|$\overrightarrow{OP}=m\overrightarrow{OA}+n\overrightarrow{OB}$},|m|+|n|=1,m,n∈R}所表示区域的周长是(  )
A.2$\sqrt{2}$B.4$\sqrt{2}$C.6$\sqrt{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求函数f(x)=$\frac{1}{3}$x3-4x+4在[0,a](a>0)上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2+alnx+2.
(1)当a=-1时,求f(x)的值域.
(2)若f(x)在(2,+∞)上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知U=R,集合A={x|(2-x)(x+3)≤4},集合{x|3|2x-1|-4<0}.
(1)求A∩B;
(2)求(∁uA)∪B.

查看答案和解析>>

同步练习册答案