精英家教网 > 高中数学 > 题目详情
17.已知$α∈(\frac{π}{2},π)$,$sinα+cosα=-\frac{1}{5}$,则$tan(α+\frac{π}{4})$=$\frac{1}{7}$.

分析 利用辅助角公式sinα+cosα=$\sqrt{2}$sin(α+$\frac{π}{4}$),可求得sin(α+$\frac{π}{4}$),结合α的范围,可α+$\frac{π}{4}$∈($\frac{3π}{4}$,$\frac{5π}{4}$),利用同角的三角函数关系可求cos(α+$\frac{π}{4}$),tan(α+$\frac{π}{4}$)的值.

解答 解:∵sinα+cosα=$\sqrt{2}$sin(α+$\frac{π}{4}$)=-$\frac{1}{5}$,
∴sin(α+$\frac{π}{4}$)=-$\frac{\sqrt{2}}{10}$,
∵α∈($\frac{π}{2}$,π),
∴α+$\frac{π}{4}$∈($\frac{3π}{4}$,$\frac{5π}{4}$),
∴cos(α+$\frac{π}{4}$)=-$\sqrt{1-si{n}^{2}(α+\frac{π}{4})}$=-$\frac{7\sqrt{2}}{10}$.
∴tan(α+$\frac{π}{4}$)=$\frac{sin(α+\frac{π}{4})}{cos(α+\frac{π}{4})}$=$\frac{1}{7}$.
故答案为:$\frac{1}{7}$.

点评 本题考查同角三角函数间的基本关系,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.现有质地均匀、大小相同、颜色分别为红、黄、蓝的小球各3个,从中随机抽取n个球(1≤n≤9),
(1)当n=3时,记事件A={抽取的三个小球中恰有两个小球颜色相同}.求P(A);
(2)当n=2时,若用ξ表示抽到的红球的个数.
①求ξ的概率分布;
②令η=-λ2ξ+λ+1,E(η)>1.求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知x0是函数f(x)=log2(x-1)+$\frac{1}{1-x}$的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则(  )
A.f(x1)<0,f(x2)<0B.f(x1)<0,f(x2)>0C.f(x1)>0,f(x2)<0D.f(x1)>0,f(x2)>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.椭圆$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),两焦点F1,F2,P为椭圆上一点,若存在$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$=c2,求e的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.过点A(4,-1),且与已知圆x2+y2+2x-6y+5=0切于点B(1,2)的圆的方程为(x-3)2+(y-1)2=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,D、E分别为边BC、AC的中点.F为边AB上的点,且$\overrightarrow{AB}$=3$\overrightarrow{AF}$,若$\overrightarrow{AD}$=x$\overrightarrow{AF}$+y$\overrightarrow{AE}$,x,y∈R,则x=$\frac{3}{2}$,y=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}满足a1=1,an=logn(n+1)(n≥2,n∈N*),定义:使乘积a1•a2•…•ak为正整数的k(k∈N*)叫做“简易数”.则在[3,2013]内所有“简易数”的和为2035.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知正项等比数列{an}的前n项和为Sn,若-3,S5,S10成等差数列,则S15-S10的最小值为(  )
A.8B.9C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2+$\frac{m}{{2}^{x}-1}$(m∈R)为奇函数.
(1)求m的值;
(2)求函数y=f(x)的单调区间,并给予证明;
(3)记g(x)=(x2-1)f(log2x)+k•x2,若函数y=g(x)在区间(0,1)上单调递增,求实数k的取值范围.

查看答案和解析>>

同步练习册答案