分析 AD为△ABC的中线,从而有$\overrightarrow{AD}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,带入$\overrightarrow{AB}=3\overrightarrow{AF},\overrightarrow{AC}=2\overrightarrow{AE}$便可得到$\overrightarrow{AD}=\frac{3}{2}\overrightarrow{AF}+\overrightarrow{AE}$,从而根据平面向量基本定理得到$x=\frac{3}{2},y=1$.
解答 解:如图,![]()
根据条件,$\overrightarrow{AD}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$=$\frac{1}{2}(3\overrightarrow{AF}+2\overrightarrow{AE})=\frac{3}{2}\overrightarrow{AF}+\overrightarrow{AE}$;
又$\overrightarrow{AD}=x\overrightarrow{AF}+y\overrightarrow{AE}$;
∴$x=\frac{3}{2},y=1$.
故答案为:$\frac{3}{2},1$.
点评 考查向量加法的平行四边形法则,向量数乘的几何意义,以及平面向量基本定理.
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{3}{8}$,-$\frac{1}{8}$) | B. | (-$\frac{3}{8}$,$\frac{1}{8}$) | C. | ($\frac{3}{10}$,-$\frac{1}{10}$) | D. | ($\frac{3}{10}$,$\frac{1}{10}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | 4$\sqrt{2}$ | C. | 6$\sqrt{2}$ | D. | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com