分析 先利用待定系数法假设圆的标准方程:(x-a)2+(y-b)2=r2,求出已知圆的圆心坐标与半径,再根据条件圆C过点A(4,-1),且与圆x2+y2+2x-6y+5=0相切于点B(1,2),列出方程组可求相应参数,从而可求方程.
解答 解:设所求圆方程:(x-a)2+(y-b)2=r2,
已知圆的圆心:(-1,3),半径=$\sqrt{5}$,
由题意可得:(4-a)2+(-1-b)2=r2,(a-1)2+(b-2)2=r2,(a+1)2+(b-3)2=($\sqrt{5}$+r)2.
解得a=3,b=1,r=$\sqrt{5}$,
所求圆:(x-3)2+(y-1)2=5,
故答案为:(x-3)2+(y-1)2=5.
点评 本题的考点是圆的标准方程,主要考查利用待定系数法求圆的标准方程,考查学生分析解决问题的能力.
科目:高中数学 来源: 题型:选择题
| A. | (2,2015) | B. | (1,2015) | C. | (2,2014) | D. | (1,2014) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | -2 | C. | 8 | D. | -4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com