精英家教网 > 高中数学 > 题目详情
已知函数f(x)定义域为(0,+∞),且满足2f(x)+f(
1
x
)=(2x-
1
x
)lnx

(Ⅰ)求f(x)解析式及最小值;
(Ⅱ)求证:?x∈(0,+∞),
x+1
ex
<1

(Ⅲ)设g(x)=
x+f(x)
xex
,h(x)=(x2+x)g′(x).求证::?x∈(0,+∞),h(x)<
4
3
分析:(Ⅰ)设x>0,则
1
x
>0
,利用2f(x)+f(
1
x
)=(2x-
1
x
)lnx
,可得2f(
1
x
)+f(x)=(x-
2
x
)lnx,由此可得函数解析式,求导函数确定函数的单调性,即可求得函数的最小值;
(Ⅱ)构造函数F(x)=
x+1
ex
-1
,证明函数F(x)在(0,+∞)上单调递减,即可证得结论;
(Ⅲ)h(x)=(x2+x)g′(x)=
x+1
ex
(1-x-xlnx),证明p(x)=1-x-xlnx取得最大值1+
1
e2
,即可得到结论.
解答:(Ⅰ)解:设x>0,则
1
x
>0

∵2f(x)+f(
1
x
)=(2x-
1
x
)lnx
,①
∴2f(
1
x
)+f(x)=(x-
2
x
)lnx,②
①×2-②得:3f(x)=3xlnx,∴f(x)=xlnx
由f′(x)=lnx+1=0,可得x=
1
e

由f′(x)=lnx+1>0,可得x>
1
e
;由f′(x)=lnx+1<0,可得0<x<
1
e

∴函数在(0,
1
e
)上单调递减,在(
1
e
,+∞)上单调递增
∴x=
1
e
时,函数取得最小值-
1
e

(Ⅱ)证明:构造函数F(x)=
x+1
ex
-1
,则F′(x)=-
x
ex

∵x∈(0,+∞),∴F′(x)<0
∴函数F(x)在(0,+∞)上单调递减
∴F(x)<F(0)=0
∴?x∈(0,+∞),
x+1
ex
<1

(Ⅲ)证明:∵g(x)=
x+f(x)
xex
,∴g′(x)=
1-x-xlnx
xex

∴h(x)=(x2+x)g′(x)=
x+1
ex
(1-x-xlnx),
令p(x)=1-x-xlnx,则p′(x)=-lnx-2
由p′(x)>0,可得0<x<
1
e2
;由p′(x)<0,可得x>
1
e2

∴函数p(x)在(0,
1
e2
)上单调递增,在(
1
e2
,+∞)上单调递减
∴x=
1
e2
时,p(x)取得最大值1+
1
e2

∵1+
1
e2
4
3
x+1
ex
<1

∴h(x)<
4
3
x+1
ex
4
3
点评:本题考查导数知识的运用,考查函数的单调性,考查函数的最值,考查不等式的证明,解题的关键是构造函数,确定函数的单调性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)定义在(-1,1)上,对于任意的x,y∈(-1,1),有f(x)+f(y)=f(
x+y
1+xy
)
,且当x<0时,f(x)>0.
(Ⅰ)验证函数f(x)=ln
1-x
1+x
是否满足这些条件;
(Ⅱ)判断这样的函数是否具有奇偶性和其单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义在R上,并且对于任意实数x,y都有f(x+y)=f(x)+f(y)成立,且x≠y时,f(x)≠f(y),x>0时,有f(x)>0.
(1)判断f(x)的奇偶性;
(2)若f(1)=1,解关于x的不等式f(x)-f(
1x-1
)≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•连云港二模)已知函数f(x)定义在正整数集上,且对于任意的正整数x,都有f(x+2)=2f(x+1)-f(x),且f(1)=2,f(3)=6,则f(2009)=
4018
4018

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义在区间(-1,1)上,f(
1
2
)=-1,且当x,y∈(-1,1)时,恒有f(x)-f(y)=f(
x-y
1-xy
),又数列{an}满足:a1=
1
2
,an+1=
2an
1+
a
2
n

(I)证明:f(x)在(-1,1)上为奇函数;
(II)求f(an)关于n的函数解析式;
(III)令g(n)=f(an)且数列{an}满足bn=
1
g(n)
,若对于任意n∈N+,都有b1+b2+…+bnt2-3t恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义在R上,对任意的x∈R,f(x+1001)=
2
f(x)
+1
,已知f(11)=1,则f(2013)=
 

查看答案和解析>>

同步练习册答案