精英家教网 > 高中数学 > 题目详情
已知曲线上任意一点到直线的距离是它到点距离的倍;曲线是以原点为顶点,为焦点的抛物线.
(Ⅰ)求,的方程;
(Ⅱ)过作两条互相垂直的直线,其中相交于点,相交于点,求四边形面积的取值范围.
(Ⅰ),;(Ⅱ).

试题分析:(Ⅰ)求 曲线,则设该曲线上某点,然后根据题目条件,得到关于的方程,再化简即可得到.曲线可以根据抛物线的几何性质得到,为抛物线焦点,从而得到;(Ⅱ)用点斜式设出的方程为,与抛物线方程联立,即可得到关于点坐标的方程.再根据韦达定理即得到的长度.由题意可设的方程为,代入可得关于点坐标的方程.再根据韦达定理即得到的长度.因为,从而四边形的面积为,经化简,通过基本不等式即可得到四边形面积的取值范围为.
试题解析:(Ⅰ)设,则由题意有,化简得:.
的方程为,易知的方程为.                      4分
(Ⅱ)由题意可设的方程为,代入,
,则,
所以.           7分
因为,故可设的方程为,代入
,设,则,
所以.   10分
故四边形的面积为

()
,因此
,当且仅当等号成立.
故四边形面积的取值范围为.                               13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设椭圆E:=1()过点M(2,), N(,1),为坐标原点
(I)求椭圆E的方程;
(II)是否存在以原点为圆心的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点在坐标原点,焦点为,点是点关于轴的对称点,过点的直线交抛物线于两点。
(Ⅰ)试问在轴上是否存在不同于点的一点,使得轴所在的直线所成的锐角相等,若存在,求出定点的坐标,若不存在说明理由。
(Ⅱ)若的面积为,求向量的夹角;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直线y=kx+b与椭圆交于A、B两点,记△AOB的面积为S.

(1)求在k=0,0<b<1的条件下,S的最大值;
(2)当|AB|=2,S=1时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为,最小值为
(Ⅰ)求椭圆方程;
(Ⅱ)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆直线与圆相切,且交椭圆两点,是椭圆的半焦距,
(Ⅰ)求的值;
(Ⅱ)O为坐标原点,若求椭圆的方程;
(Ⅲ) 在(Ⅱ)的条件下,设椭圆的左右顶点分别为A,B,动点,直线AS,BS与直线分别交于M,N两点,求线段MN的长度的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的两条渐近线与抛物线的准线分别交于两点,为坐标原点,的面积为,则双曲线的离心率(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线交抛物线两点,则△(     )
A.为直角三角形B.为锐角三角形
C.为钝角三角形D.前三种形状都有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

分别为双曲线的左、右焦点,为双曲线的左顶点,以为直径的圆交双曲线某条渐过线两点,且满足,则该双曲线的离心率为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案