精英家教网 > 高中数学 > 题目详情
1.在圆x2+y2=8上任取一点P,过点P作x轴的垂线段PD,D为垂足,当点P在圆上运动时,线段PD的中点M的轨迹方程是$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1$.

分析 设出P(x0,y0),M(x,y),D(x0,0),由中点坐标公式把P的坐标用M的坐标表示,代入圆的方程得答案.

解答 解:设P(x0,y0),M(x,y),D(x0,0),
∵M是PD的中点,
∴x0=x,y0=2y,
又P在圆x2+y2=8上,
∴x02+y02=8,即x2+4y2=8,
∴$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1$.
∴线段PD的中点M的轨迹方程是$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1$.
故答案为$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1$.

点评 本题考查了轨迹方程的求法,考查了代入法求曲线的轨迹方程,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知f(x)=$2{cos^2}x+2\sqrt{3}sinxcosx-1$.
(1)求f(x)的最小正周期;
(2)在△ABC中,角A、B、C的对边分别为a,b,c,f(A)=2,a=$\sqrt{3}$,B=$\frac{π}{4}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,过抛物线C:y2=2px(p>0)的焦点F作直线交C于A、B两点,过A、B分别向C的准线l作垂线,垂足为A1、B1,已知△AA1F与△BB1F的面积分别为9和1,则△A1B1F的面积为(  )
A.4B.6C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,若a=b=$\sqrt{3}$,∠C=$\frac{5π}{6}$,则c=$\frac{3\sqrt{2}+\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.正方体ABCD-A1B1C1D1中棱长为1,则面A1BD与底面ABCD所成的角余弦值为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{6}}}{3}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=\left\{\begin{array}{l}-{x^2}{e^x},x<0\\-{x^2}+4x+3,x≥0\end{array}\right.$,若方程f(x)-k=0有两个零点,则实数k的取值范围是(  )
A.[3,7)∪{-4e-2,0}B.[3,7)∪{-4e-2}C.[4e-2,7)D.[0,7]∪{-4e-2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.化简:$\frac{sin58°-sin28°cos30°}{cos28°}$=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=|x2-1|+x2+kx.若对于区间(0,+∞)内的任意x,总有f(x)≥0成立,求实数k的取值范围为(  )
A.[0,+∞)B.[-2,+∞)C.(-2,+∞)D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若α满足$sin(α-\frac{π}{6})=\frac{1}{3}$,则$cos(\frac{2π}{3}-α)$的值为(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.$-\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

同步练习册答案