精英家教网 > 高中数学 > 题目详情
如右图,在四棱锥中,底面为平行四边形,中点,平面中点.
(1)证明://平面
(2)证明:平面
(3)求直线与平面所成角的正切值.
(1)证明:见解析;(2)证明:见解析;(3)
本题考查线面平行、线面垂直、面面垂直,解题的关键是正确运用线面平行、线面垂直、面面垂直的判定定理,属于中档题.
(Ⅰ)证明PB∥平面ACM,利用线面平行的判定定理,证明MO∥PB即可;
(Ⅱ)证明AD⊥平面PAC,利用线面垂直的判定定理,证明AD⊥AC,AD⊥PO即可;
(Ⅲ)根据AD⊥平面PAC,利用面面垂直的判定定理,可证平面PAD⊥平面PAC,从而得到线面角的求解。
(1)证明:连接
分别为中点,


//平面
(2)证明:

平面,且

为平面内的两条相交直线
平面
(3)解:作OD中点N,连接MN,AN
分别为中点

平面
平面
为直线与平面所成角
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,长方体中,,点E是AB的中点.

(1)证明:平面;
(2)证明:;
(3)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本小题满分12分)

已知三棱锥P­ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=AB,
N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.
(I)证明:CM⊥SN;(II)求SN与平面CMN所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在底面为直角梯形的四棱锥P—ABCD中,
平面
(1)求证:平面PAC;
(2) 求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在中,上的高,沿折起,使 。
(Ⅰ)证明:平面ADB  ⊥平面BDC;
(Ⅱ)设E为BC的中点,求AE与DB夹角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知为平行四边形所在平面外一点,的中点,
求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,空间中两个有一条公共边AD的正方形ABCD和ADEF.设M、N分别是BD和AE的中点,那么        

①AD⊥MN;②MN∥平面CDE;③MN∥CE;④MN、CE异面
以上4个命题中正确的是  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两条相交直线a,b,a∥平面,则b与的位置关系是(     )
A.b平面B.b与平面相交
C.b∥平面D.b在平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,,是空间三条不同的直线,则下列命题正确的是(  )
A.,
B.,
C.,,共面
D.,,共点,,共面

查看答案和解析>>

同步练习册答案