精英家教网 > 高中数学 > 题目详情
如图,空间中两个有一条公共边AD的正方形ABCD和ADEF.设M、N分别是BD和AE的中点,那么        

①AD⊥MN;②MN∥平面CDE;③MN∥CE;④MN、CE异面
以上4个命题中正确的是  
1,2,3
:(1)取AD的中点H,连接NH,MH则NH//DE,NH=DE,MH//CD, MH=CD
又AD⊥DE,AD⊥CD所以AD⊥NH,AD⊥MH又NH∩MH="H" 所以AD⊥面MHN 所以AD⊥MN 所以(1)正确(2)由(1)知NH//DE,NH=DE,MH//CD, MH=CD则面MHN∥面CDE 又MN?面MHN 所以MN∥平面CDE 所以(2)正确
(3)连接AC则AC过点M 在三角形ACE中M,N为中点所以MN∥CE 所以(3)正确,(4)错,故答案为:①②③
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

四棱锥底面是平行四边形,面,,,分别为的中点.

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如右图,在四棱锥中,底面为平行四边形,中点,平面中点.
(1)证明://平面
(2)证明:平面
(3)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体中,为底面的中心,的中点,设上的中点,求证:(1);
(2)平面∥平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)如图,在边长为2的菱形中,的中点.(Ⅰ)求证:平面 ;
(Ⅱ)若,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在中,为△ABC所在平面外一点,PA⊥面ABC,则四面体P-ABC中共有直角三角形个数为
A.4B.3 C.2D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

垂直于同一平面的两条直线一定(   )
A.相交B.平行C.异面D.以上都有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,直线PA垂直于圆O所在的平面,内接于圆O,且AB为圆O的直径,点M为线段PB的中点.现有以下命题:①;②;③点A到平面PBC距离就是△PAC的PC边上的高.④二面角P-BC-A大小不可能为450,其中真命题的个数为 (   )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.正方体ABCD-A1B1C1D1中,E、F分别AB、C1D1的中点,则A1B1与平面A1EF所成角的正切值为
A.2               B.             C.1                D.

查看答案和解析>>

同步练习册答案