精英家教网 > 高中数学 > 题目详情
如图,在正方体中,为底面的中心,的中点,设上的中点,求证:(1);
(2)平面∥平面.
见解析。
(1)在中,分别是的中点,则
,根据线面平行的判定定理证得
(2)连接可证出四边形是平行四边形,所以.又,根据线面平行的判定定理证得.结合(1)与面面平行的判定定理可证得平面∥平面.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,AC是圆O的直径,点B在圆O上,交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1,

(1)证明
(2)(文科)求三棱锥的体积
(理科)求平面和平面所成的锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,,且,E是PC的中点.

(1)证明:;  
(2)证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)如图,在直三棱柱中,,点的中点.
(Ⅰ)求证:
(Ⅱ)求证:平面
(Ⅲ)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图,在矩形ABCD中,AB=2BC,点M在边CD上,点F在边AB上,且,垂足为E,若将沿AM折起,使点D位于位置,连接得四棱锥.
(1)求证:;(2)若,直线与平面ABCM所成角的大小为,求直线与平面ABCM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图,四棱锥的底面为矩形,且


(Ⅰ)平面与平面是否垂直?并说明理由;
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,,侧面为等边三角形,

(Ⅰ)证明:平面;
(Ⅱ)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列命题中:
(1)、平行于同一直线的两个平面平行;
(2)、平行于同一平面的两个平面平行;
(3)、垂直于同一直线的两直线平行;
(4)、垂直于同一平面的两直线平行.
其中所有正确的命题有_____________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,空间中两个有一条公共边AD的正方形ABCD和ADEF.设M、N分别是BD和AE的中点,那么        

①AD⊥MN;②MN∥平面CDE;③MN∥CE;④MN、CE异面
以上4个命题中正确的是  

查看答案和解析>>

同步练习册答案