精英家教网 > 高中数学 > 题目详情
(本题满分14分)如图,在矩形ABCD中,AB=2BC,点M在边CD上,点F在边AB上,且,垂足为E,若将沿AM折起,使点D位于位置,连接得四棱锥.
(1)求证:;(2)若,直线与平面ABCM所成角的大小为,求直线与平面ABCM所成角的正弦值.
(1)证明:见解析;
(2)
(Ⅰ)根据图形折叠前后的关系,易证AM⊥面D′EF,得出AM⊥D′F.
(Ⅱ)由(Ⅰ)知,AM⊥面D′EF,所以平面ABCM⊥面D′EF,过D′作D′H⊥EF,则D′H⊥平面ABCM,,∠D′FH是直线D'F与平面ABCM所成角,∠D′AH是直线AD′与平面ABCM所成角在直角三角形D′AH求解即可.
(1)证明:∵AM⊥,AM⊥EF,
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在等腰梯形中,是梯形的高,,现将梯形沿折起,使,且,得一简单组合体如图所示,已知分别为的中点.

(1)求证:平面
(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体中,为底面的中心,的中点,设上的中点,求证:(1);
(2)平面∥平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)如图,在边长为2的菱形中,的中点.(Ⅰ)求证:平面 ;
(Ⅱ)若,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)四棱锥中,底面为矩形,侧面底面

(Ⅰ)证明:
(Ⅱ)设与平面所成的角为
求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

垂直于同一平面的两条直线一定(   )
A.相交B.平行C.异面D.以上都有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,直线PA垂直于圆O所在的平面,内接于圆O,且AB为圆O的直径,点M为线段PB的中点.现有以下命题:①;②;③点A到平面PBC距离就是△PAC的PC边上的高.④二面角P-BC-A大小不可能为450,其中真命题的个数为 (   )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果直线l,m与平面α、β、γ满足β∩γ=l,,,那么必有(  )
A.m//β且l⊥mB.α//β且α⊥γ
C.α⊥β且m//γ   D.α⊥γ且l⊥m

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间中,a,b是不重合的直线,α,β是不重合的平面,则下列条件中可推出a∥b的是:
A.aα,bβ α∥βB.a⊥α b⊥α
C.a∥αbαD.a⊥α bα

查看答案和解析>>

同步练习册答案