精英家教网 > 高中数学 > 题目详情
在空间中,a,b是不重合的直线,α,β是不重合的平面,则下列条件中可推出a∥b的是:
A.aα,bβ α∥βB.a⊥α b⊥α
C.a∥αbαD.a⊥α bα
B
垂直于同一个平面的两条直线平行.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图,在矩形ABCD中,AB=2BC,点M在边CD上,点F在边AB上,且,垂足为E,若将沿AM折起,使点D位于位置,连接得四棱锥.
(1)求证:;(2)若,直线与平面ABCM所成角的大小为,求直线与平面ABCM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,,侧面为等边三角形,

(Ⅰ)证明:平面;
(Ⅱ)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图:四棱锥PABCD中,底面ABCD是矩形,PA⊥底面ABCDPA=AB=1,AD=,点FPB的中点,点E在边BC上移动.

(Ⅰ)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(Ⅱ)证明:无论点E在BC边的何处,都有PE⊥AF;
(Ⅲ)当BE等于何值时,PA与平面PDE所成角的大小为45°                  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)

如图,在四棱锥EABCD中,底面ABCD为矩形,平面ABCD⊥平面ABE,∠AEB=90°,BEBCFCE的中点,求证:
(1) AE∥平面BDF
(2) 平面BDF⊥平面BCE

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:C、D是以AB为直径的圆上两点,在线段上,且 ,将圆沿直径AB折起,使点C在平面ABD的射影E在BD上.

(I)求证平面ACD⊥平面BCD;
(II)求证:AD//平面CEF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平面∥平面外一点,过点的直线分别交于,过点的直线分别交于,则的长为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题8分)已知三棱锥A—BCD及其三视图如图所示.

(1)求三棱锥A—BCD的体积与点D到平面ABC的距离;
(2)求二面角 B-AC-D的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

表示不同的直线,表示不同的平面,给出下列四个命题:
①若,且;         
②若,且.则
③若,则∥m∥n;
④若且n∥,则∥m.
其中正确命题的个数是
A.1B.2 C.3D.4

查看答案和解析>>

同步练习册答案