精英家教网 > 高中数学 > 题目详情
(本小题满分14分)
如图:四棱锥PABCD中,底面ABCD是矩形,PA⊥底面ABCDPA=AB=1,AD=,点FPB的中点,点E在边BC上移动.

(Ⅰ)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(Ⅱ)证明:无论点E在BC边的何处,都有PE⊥AF;
(Ⅲ)当BE等于何值时,PA与平面PDE所成角的大小为45°                  
(I)当点E为BC的中点时,

EF与平面PAC平行.
∵在△PBC中,
E、F分别为BC、PB的中点,
∴EF//PC 又EF平面PAC,
而PC平面PAC ∴EF//平面PAC.…4分
(II)证明:见解析;
(Ⅲ)BE=x=,或BE=x=+(舍).
(I)当E为BC的中点时,EF//PC,进而可得EF//平面ABCD.
(II)无论点E在BC边的何处,都有PE⊥AF,这句话的实质是证明AF⊥平面PBE.
(III) 关键是找出PA与平面PDE所成的角,具体做法:过A作AG⊥DE于G,连PG,又∵DE⊥PA,则DE⊥平面PAG,于是,平面PAG⊥平面PDE,它们的交线是PG,过A作AM⊥PG,垂足为M,则AM⊥平面PDE,则∠APG就是PA与平面PDE所成的角.也可利用向量法求解.                                                        
解法1:(I)当点E为BC的中点时,

EF与平面PAC平行.∵在△PBC中,
E、F分别为BC、PB的中点,
∴EF//PC 又EF平面PAC,
而PC平面PAC ∴EF//平面PAC.…4分
(II)证明:∵PA⊥平面ABCD,BE平面ABCD,
∴EB⊥PA.又EB⊥AB,AB∩AP=A,AB,AP平面PAB,
∴EB⊥平面PAB,
又AF平面PAB,∴AF⊥BE.       
又PA=AB=1,点F是PB的中点,∴AF⊥PB,……………………4分
又∵PB∩BE=B,PB,BE平面PBE,∴AF⊥平面PBE.
∵PE平面PBE,∴AF⊥PE.……………………8分
(Ⅲ)过A作AG⊥DE于G,连PG,又∵DE⊥PA,则DE⊥平面PAG,
于是,平面PAG⊥平面PDE,它们的交线是PG,过A作AM⊥PG,垂足为M,则AM⊥平面PDE,即PA在平面PDE的射影是PM,所以PA与平面PDE所成的角是∠APG=45°.
∴在RtPAG中,PA=AG=1,∴DG=,………………10分
设BE=x,∵△AGE≌△ABE,则GE=x,CE=x
在Rt△DCE中,(+x)2=(x)2+12,得BE=x=.……12分
解法二:(II)建立图示空间直角坐标系,

则P(0,0,1),B(0,1,0),
 设
∴AF⊥PE …8分
(Ⅲ)设平面PDE的法向量为

=(0,0,1)依题意PA与平面PDE所成角为45°,
所以sin45°=

得BE=x=,或BE=x=+(舍).……………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是正方形,,点E在棱PB上.

(Ⅰ)求证:平面
(Ⅱ)当时,求AE与平面PDB所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)   
如图,已知分别是正方形的中点,交于点都垂直于平面,且是线段上一动点.

(Ⅰ)求证:平面平面
(Ⅱ)试确定点的位置,使得平面
(Ⅲ)当中点时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,直线PA垂直于圆O所在的平面,内接于圆O,且AB为圆O的直径,点M为线段PB的中点.现有以下命题:①;②;③点A到平面PBC距离就是△PAC的PC边上的高.④二面角P-BC-A大小不可能为450,其中真命题的个数为 (   )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.正方体ABCD-A1B1C1D1中,E、F分别AB、C1D1的中点,则A1B1与平面A1EF所成角的正切值为
A.2               B.             C.1                D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将边长为2,一个内角为的菱形沿较短对角线折成四面体,点
 分别为的中点,则下列命题中正确的是                   。
;②;③有最大值,无最小值;
④当四面体的体积最大时,; ⑤垂直于截面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线,平面,且,给出下列四个命题:
①若,则;②若,则
③若,则;④若,则
其中为真命题的序号是_______

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中错误的是.
A.若,则
B.若,则
C.若,则
D.若=AB,//AB,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间中,a,b是不重合的直线,α,β是不重合的平面,则下列条件中可推出a∥b的是:
A.aα,bβ α∥βB.a⊥α b⊥α
C.a∥αbαD.a⊥α bα

查看答案和解析>>

同步练习册答案