精英家教网 > 高中数学 > 题目详情
表示不同的直线,表示不同的平面,给出下列四个命题:
①若,且;         
②若,且.则
③若,则∥m∥n;
④若且n∥,则∥m.
其中正确命题的个数是
A.1B.2 C.3D.4
B
①正确 .两条平行直线,有一条垂直一个平面,另一条也垂直这个平面.
②错.l可能在平面内.
③错.三个平面可以相交于一点.
④正确.三个平面要么相交于一点,要么交线相互平行.本小题属于后一种情况.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)四棱锥中,底面为矩形,侧面底面

(Ⅰ)证明:
(Ⅱ)设与平面所成的角为
求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共12分)
如图,在直三棱柱中,,点的中点,

(1)求证:平面
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是正方形,,点E在棱PB上.

(Ⅰ)求证:平面
(Ⅱ)当时,求AE与平面PDB所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知是矩形,平面的中点.

(1)求证:平面
(2)求直线与平面所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知平面平面,矩形的边长.

(Ⅰ)证明:直线平面
(Ⅱ)求直线和底面所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分) 22.已知四棱锥P-ABCD的底面为直角梯形,AB∥DC, 
底面ABCD,PA=AD=DC=AB=1,M是PB的中点

(Ⅰ)证明:面PAD⊥面PCD;
(Ⅱ)求异面直线CM与AD所成角的正切值;
(Ⅲ)求面MAC与面BAC所成二面角的正切值

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是两条不同的直线,是两个不同的平面,
有下列四个命题:
①若  ;
,则
③若
④若
其中正确的命题是      .(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间中,a,b是不重合的直线,α,β是不重合的平面,则下列条件中可推出a∥b的是:
A.aα,bβ α∥βB.a⊥α b⊥α
C.a∥αbαD.a⊥α bα

查看答案和解析>>

同步练习册答案