精英家教网 > 高中数学 > 题目详情
如果直线l,m与平面α、β、γ满足β∩γ=l,,,那么必有(  )
A.m//β且l⊥mB.α//β且α⊥γ
C.α⊥β且m//γ   D.α⊥γ且l⊥m
D
∵m?α,且m⊥γ⇒α⊥γ,∵β∩γ=l,,∴l⊥m.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,,且,E是PC的中点.

(1)证明:;  
(2)证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图,在矩形ABCD中,AB=2BC,点M在边CD上,点F在边AB上,且,垂足为E,若将沿AM折起,使点D位于位置,连接得四棱锥.
(1)求证:;(2)若,直线与平面ABCM所成角的大小为,求直线与平面ABCM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图,四棱锥的底面为矩形,且


(Ⅰ)平面与平面是否垂直?并说明理由;
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:在多面体中,,


(1)求证:;
(2)求证:
(3)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,矩形ABCD中,AD⊥平面ABE,AE=EB=BC,F为CE上的点,且BF⊥平面ACE.

(1)求证:AE⊥平面BCE;
(2)求证:AE∥平面BFD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,,侧面为等边三角形,

(Ⅰ)证明:平面;
(Ⅱ)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)

如图,在四棱锥EABCD中,底面ABCD为矩形,平面ABCD⊥平面ABE,∠AEB=90°,BEBCFCE的中点,求证:
(1) AE∥平面BDF
(2) 平面BDF⊥平面BCE

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平面∥平面外一点,过点的直线分别交于,过点的直线分别交于,则的长为         

查看答案和解析>>

同步练习册答案