精英家教网 > 高中数学 > 题目详情
如图所示,平面平面,且四边形为矩形,四边形为直角梯形,
(1)求证平面;(2)求平面与平面所成锐二面角的余弦值.
(1)证明见解析;(2).

试题分析:(方法一:传统几何方法)(1)证明线面平行,可在平面内找到一条线与面外的线AF平行即可,因此本小题可取CE中点为G,连接DG,FG,证明四边形AFGD为平行四边形即可完成证明;(2)本小题中可过点E作CB的平行线交BF的延长线于P,连接FP,EP,AP,把问题转化为证明为平面与平面所成锐二面角的平面角,再利用直角三角形的边角关系算出其余弦值.
(方法二:空间向量方法)(1)本小题可以以C为原点,CB所在直线为x轴,CE所在直线为y轴,CD所在直线为z轴建立空间直角坐标系,把问题转化为证明AF的方向向量与平面CDE的一个法向量垂直(证它们的数量积为零),而根据题意易得这个法向量为;(2)本小题为常考的利用空间向量解决面面角问题,只需找到这两个面的法向量,利用公式完成计算即可,但要注意本题面面角为锐二面角.
试题解析:(方法一:)(1)取CE中点为G,连接DG,FG,

,∴四边形BFGC为平行四边形,则.
∵四边形ABCD为矩形,∴,∴,
∴四边形AFGD为平行四边形,则
,∴.
(2)过点E作CB的平行线交BF的延长线于P,连接FP,EP,AP,
,∴A,P,E,D四点共面.四边形为直角梯形,四边形为矩形,,又平面,又平面平面为平面与平面所成锐二面角的平面角.
.即平面与平面所成锐二面角的余弦值为
(方法二:)(1)四边形为直角梯形,四边形为矩形,,又平面平面,且平面平面,∴平面,以C为原点,CB所在直线为x轴,CE所在直线为y轴,CD所在直线为z轴建立如图所示空间直角坐标系.

根据题意我们可得以下点的坐标:
为平面的一个法向量,又∵
平面.
(2)设平面的一个法向量为,∵
, 取,得平面平面一个法向量为,设平面与平面所成锐二面角的大小为,则.因此,平面与平面所成锐二面角的余弦值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知侧棱垂直于底面的四棱柱,ABCD-A1B1C1D1的底面是菱形,且AD="A" A1
点F为棱BB1的中点,点M为线段AC1的中点.
(1)求证: MF∥平面ABCD
(2)求证:平面AFC1⊥平面ACC1A1

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图. 直三棱柱ABC —A1B1C1中,A1B1= A1C1,点D、E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.
求证:(1)平面ADE⊥平面BCC1B1
(2)直线A1F∥平面ADE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面是平行四边形,平面的中点.
(1)求证:平面
(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本题14分)已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)
⑴求以向量为一组邻边的平行四边形的面积S;
⑵若向量分别与向量垂直,且,求向量的坐标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,试问是否存在实数,使成立?如果存在,求出;如果不存在,请写出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,棱长为的正方体中,为线段上的动点,则下列结论错误的是
A.
B.平面平面
C.的最大值为
D.的最小值为

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

[2014·福州质检]对于平面α和共面的直线m,n,下列命题是真命题的是(  )
A.若m,n与α所成的角相等,则m∥n
B.若m∥α,n∥α,则m∥n
C.若m⊥α,m⊥n,则n∥α
D.若m?α,n∥α,则m∥n

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若向量,则这两个向量的位置关系是___________。

查看答案和解析>>

同步练习册答案