精英家教网 > 高中数学 > 题目详情
.(本题14分)已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)
⑴求以向量为一组邻边的平行四边形的面积S;
⑵若向量分别与向量垂直,且,求向量的坐标。

(1)
(2)a=(1,1,1), a=(-1,-1,-1)
解:⑴
∴∠BAC=60°,
⑵设a=(x,y,z),则

解得x=y=z=1或x=y=z=-1,∴a=(1,1,1), a=(-1,-1,-1).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题10分)如图,已知平行四边形ABCD和矩形ACEF所在的平面互相垂直,

(1)求证:AC⊥BF;
(2)求点A到平面FBD的距离. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图5:正方体ABCD-A1B1C1D1,过线段BD1上一点P(P平面ACB1)作垂直于D1B的平面分别交过D1的三条棱于E、F、G.
(1)求证:平面EFG∥平面A CB1,并判断三角形类型;
(2)若正方体棱长为a,求△EFG的最大面积,并求此时EF与B1C的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,平面平面,且四边形为矩形,四边形为直角梯形,
(1)求证平面;(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方体ABCD-A1B1C1D1中,E,F分别为AB与BB1的中点,

(Ⅰ)求证:EF⊥平面A1D1B ;
(Ⅱ)求二面角F-DE-C大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图8,在直角梯形中,,且.现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面互相垂直,如图9.
(1)求证:平面平面
(2)求平面与平面所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点,AB="4AN," M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四面体两两垂直,的中点,的中点.
(1)建立适当的坐标系,写出点的坐标;
(2)求与底面所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)
已知空间三点
(1)求
(2)求以AB,AC为边的平行四边形的面积。

查看答案和解析>>

同步练习册答案