精英家教网 > 高中数学 > 题目详情
如图,四面体两两垂直,的中点,的中点.
(1)建立适当的坐标系,写出点的坐标;
(2)求与底面所成的角的余弦值.
(1)点坐标为点坐标为
(2)
(1)如图,以轴,轴,轴,为原点建立

空间直角坐标系,则点坐标为点坐标为
点坐标为
的中点,

中点,

(2)设中点,则
两两互相垂直,平面
分别为中点,
.故与面所成的角.

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知向量,可构成空间向量的一个基底,若
,在向量已有的运算法则的基础上,新定义一种运算,显然的结果仍为一向量,记作

(1)      求证:向量为平面的法向量;
(2)      求证:以为边的平行四边形的面积等于
(3)      将四边形按向量平移,得到一个平行六面体,试判断平行六面体的体积的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面是平行四边形,平面的中点.
(1)求证:平面
(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥中,,为菱形,且有
,∠,中点.
(Ⅰ)证明:
(Ⅱ)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本题14分)已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)
⑴求以向量为一组邻边的平行四边形的面积S;
⑵若向量分别与向量垂直,且,求向量的坐标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知棱长为1的正方体ABCD-A1B1C1D1中,E是A1B1的中点,求直线AE与平面ABC1D1所成角的正弦值                    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示的多面体是由底面为的长方体被截面所截面而得到的,其中.
(Ⅰ)求的长;
(Ⅱ)求二面角E-FC1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,试问是否存在实数,使成立?如果存在,求出;如果不存在,请写出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若向量,则这两个向量的位置关系是___________。

查看答案和解析>>

同步练习册答案