精英家教网 > 高中数学 > 题目详情
已知棱长为1的正方体ABCD-A1B1C1D1中,E是A1B1的中点,求直线AE与平面ABC1D1所成角的正弦值                    
如图建立空间直角坐标系,=(0,1,0),=(-1,0,1),=(0,,1)
设平面ABC1D1的法向量为=(xy,z),
由   可解得=(1,0,1)

设直线AE与平面ABC1D1所成的角为θ,则
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图5:正方体ABCD-A1B1C1D1,过线段BD1上一点P(P平面ACB1)作垂直于D1B的平面分别交过D1的三条棱于E、F、G.
(1)求证:平面EFG∥平面A CB1,并判断三角形类型;
(2)若正方体棱长为a,求△EFG的最大面积,并求此时EF与B1C的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,AB=2,BC=B1B=1,M、N分别是AD、DC的中点.
(1)求证:MN//A1C1;
(2)求:异面直线MN与BC1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图8,在直角梯形中,,且.现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面互相垂直,如图9.
(1)求证:平面平面
(2)求平面与平面所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点,AB="4AN," M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在棱长为的正方体中,则平面与平面间的距离   (   )
      
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四面体两两垂直,的中点,的中点.
(1)建立适当的坐标系,写出点的坐标;
(2)求与底面所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,正方体ABCD-A1B1C1D1,M为AA1的中点,N为A1B1上的点,且满足A1N=NB1,P为底面正方形A1B1C1D1的中心.求证:MN⊥MC,MP⊥B1C.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是不重合的两条直线,是不重合的两个平面.下列命题:①若,则; ②若,则;③若,则;④若,则.其中所有真命题的序号是       

查看答案和解析>>

同步练习册答案