精英家教网 > 高中数学 > 题目详情
如图,正方体ABCD-A1B1C1D1中,E,F分别为AB与BB1的中点,

(Ⅰ)求证:EF⊥平面A1D1B ;
(Ⅱ)求二面角F-DE-C大小.
(1)  以D为原点,分别以DA、DC、DD1所在直线为X、Y、Z轴,建立空间直角坐标系(如图所示),设正方体ABCD-A1B1C1D1棱长为2,则E(2,1,0),F(2,2,1),

(2)  A1(2,0,2),D1(0,0,2),B(2,2,0);=(0,1,1),
=(-2,0,0),=(0,2,-2).   
=0,="0" ,可得 EF⊥A1D1
EF⊥A1B,∴EF⊥平面A1D1B                
(2)平面CDE的法向量为=(0,0,2),设平面DEF的法向量为 =(x,y,z),由=0,="0" ,解得2 x=" -" y=z,
可取 =(1,-2,2),设二面角F-DE-C大小为θ,
∴cosθ===
即二面角F—DE—C大小为rccos
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P—ABCD中,为边长为2的正三角形,底面ABCD为菱形,且平面PAB⊥平面ABCD,,E为PD点上一点,满足

(1)证明:平面ACE平面ABCD;
(2)求直线PD与平面ACE所成角正弦值的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,己知三棱柱的侧棱与底面垂直,,MN分别是的中点,P点在上,且满足
(I)证明:
(II)当取何值时,直线PN与平面ABC所成的角最大?并求出该最大角的正切值;
(III)  在(II)条件下求P到平而AMN的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥中,,为菱形,且有
,∠,中点.
(Ⅰ)证明:
(Ⅱ)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABC-A1B1C1的底面是边长为3的正三角形,侧棱AA1垂直于底面ABC,AA1=,D是CB延长线上一点,且BD=BC.
(1)求证:直线BC1∥平面AB1D;
(2)求二面角B1-AD-B的大小;
(3)求三棱锥C1-ABB1的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知三点不共线,为平面外任一点,若由确定的一点与三点共面,则             .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本题14分)已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)
⑴求以向量为一组邻边的平行四边形的面积S;
⑵若向量分别与向量垂直,且,求向量的坐标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,试问是否存在实数,使成立?如果存在,求出;如果不存在,请写出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平行六面体中,若(  )
A.1B.C.D.

查看答案和解析>>

同步练习册答案