精英家教网 > 高中数学 > 题目详情
如图所示,己知三棱柱的侧棱与底面垂直,,MN分别是的中点,P点在上,且满足
(I)证明:
(II)当取何值时,直线PN与平面ABC所成的角最大?并求出该最大角的正切值;
(III)  在(II)条件下求P到平而AMN的距离.
(Ⅰ) (12分) (Ⅰ)以分别为轴的正方向,建立空间直角坐标系,则 ----2分
从而,-------4分(3分)
          -------5分(4分)

(Ⅱ)平面ABC的一个法向量为n=(0,0,1)---------6分(5分)
则sinθ=∣cos<>∣==------8分(6分)
,当θ最大时,sinθ最大,tanθ最大,…理(7分)
时,sinθ取到最大值时,tanθ=2 ……(8分)
(Ⅲ)设平面AMN的法向量为="(x,y" ,z)  由 .=0 ,.=0
=(1,,2)=(,0,1) …(10分)
 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知四棱锥的底面是正方形,底面上的任意一点.

(1)求证:平面平面
(2)当时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题10分)如图,已知平行四边形ABCD和矩形ACEF所在的平面互相垂直,

(1)求证:AC⊥BF;
(2)求点A到平面FBD的距离. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图5:正方体ABCD-A1B1C1D1,过线段BD1上一点P(P平面ACB1)作垂直于D1B的平面分别交过D1的三条棱于E、F、G.
(1)求证:平面EFG∥平面A CB1,并判断三角形类型;
(2)若正方体棱长为a,求△EFG的最大面积,并求此时EF与B1C的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体ABCD-A1B1C1D1中,二面角C1-AB-C的平面角等于________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点,作交PB于点F.
(1)证明 平面
(2)证明平面EFD;
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,AB=2,BC=B1B=1,M、N分别是AD、DC的中点.
(1)求证:MN//A1C1;
(2)求:异面直线MN与BC1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是正方形,⊥平面,,点ESD上的点,且.
(1)求证:对任意的,都有ACBE
(2)若二面角C-AE-D的大小为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方体ABCD-A1B1C1D1中,E,F分别为AB与BB1的中点,

(Ⅰ)求证:EF⊥平面A1D1B ;
(Ⅱ)求二面角F-DE-C大小.

查看答案和解析>>

同步练习册答案