精英家教网 > 高中数学 > 题目详情
18.设函数y=f(x)定于在实数集R上,当x>0时,f(x)>1,且对任意示数m,n都有f(m+n)=f(m)•f(n).
(1)证明f(x)在R上,恒有f(x)>0;
(2)证明f(x)在R上是增函数.

分析 (1)利用赋值法即可证明f(x)>0,
(2)然后利用函数单调性的定义进行证明即可.

解答 解:(1)函数f(x)在R上是单调递增函数.
证明:令m=0,n=2,则f(n)>1,
∴f(0+2)=f(0)f(2)=f(2),
则f(0)=1
∵当x>0时,f(x)>1
∴当x<0,则-x>0,
得f(x-x)=f(x)f(-x)=f(0)=1,
得$f(x)=\frac{1}{f(-x)}>0$,
故对于任意x∈R,都有f(x)>0,
(2)设x1,x2∈R,且x1>x2
则x1-x2>0,∴f(x1-x2)>1,
∴f(x1)=f[(x1-x2)+x2]=f(x1-x2)f(x2)>f(x2),
∴函数f(x)在R上是单调递增函数.

点评 本题考查函数单调性的判断与应用,考查赋值法的运用,考查学生的推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.若(x2+ax+8)(x2-3x+b)的乘积中不含x2和x3项,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知△ABC的三个顶点的坐标分别是A(3,3),B(-1,0),C($\frac{3}{4}$,0),则△ABC的内角A的平分线所在的直线方程是x-y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设f(x)是任意一个函数,其定义域在x轴上关于原点对称
(1)判断下列函数的奇偶性:F(x)=$\frac{1}{2}$[f(x)+f(-x)],G(x)=$\frac{1}{2}$[f(x)-f(-x)];
(2)求证:f(x)一定可以表示成一个奇函数与一个偶函数的和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.空间不共线的四点,可以确定平面的个数是(  )
A.0B.1C.1或4D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设f′(x)=k,求$\underset{lim}{x→∞}$[f(x+a)-f(x)].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知直线l的斜率k=2,并且经过一点(2,-3)则直线的点斜式方程为(  )
A.y-3=2(x-2)B.y+3=2(x-2)C.y-2=k(x+3)D.y-2=2(x-3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若某几何体的三视图如图所示,其中A1M:AM=7:5.则此几何体的体积等于(  )
A.55B.62C.65D.72

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线y=x+b(b>0)上存在唯一一点A,满足点A到两点F1(-1,0),F2(1,0)的距离之和等于2$\sqrt{2}$,则b=$\sqrt{3}$,点A的坐标为($-\frac{2\sqrt{3}}{3},\frac{\sqrt{3}}{3}$).

查看答案和解析>>

同步练习册答案