精英家教网 > 高中数学 > 题目详情
若椭圆的短轴为,一个焦点为,且为等边三角形的椭圆的离心率是(  )
A.B.C.D.
B

试题分析:因为椭圆的短轴长为,所以
点评:离心率是圆锥曲线中一个常考的内容,要重点把握.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)
设点P是圆x2 +y2 =4上任意一点,由点P向x轴作垂线PP0,垂足为Po,且
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)设直线:y=kx+m(m≠0)与(Ⅰ)中的轨迹C交于不同的两点A,B.
(1)若直线OA,AB,OB的斜率成等比数列,求实数m的取值范围;
(2)若以AB为直径的圆过曲线C与x轴正半轴的交点Q,求证:直线过定点(Q点除外),并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,=(3,-1)共线.
(1)求椭圆的离心率;
(2)设M为椭圆上任意一点,且),证明为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,;则的实轴长为____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

点P到点及到直线的距离都相等,如果这样的点恰好只有一个,那么a的值是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)设直线与直线交于点.
(1)当直线点,且与直线垂直时,求直线的方程;
(2)当直线点,且坐标原点到直线的距离为时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F为抛物线y2=4x的焦点,A、B、C为该抛物线上三点,若=0,则||+||+||=___________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设分别是圆和椭圆的弦,且弦的端点在轴的异侧,端点的横坐标分别相等,纵坐标分别同号.

(Ⅰ)若弦所在直线斜率为,且弦的中点的横坐标为,求直线的方程;
(Ⅱ)若弦过定点,试探究弦是否也必过某个定点. 若有,请证明;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)双曲线C与椭圆有相同的焦点,直线y=的一条渐近线.
(Ⅰ)求双曲线的方程;
(Ⅱ)过点(0,4)的直线,交双曲线于A,B两点,交x轴于点(点与的顶点不重合)。当 =,且时,求点的坐标

查看答案和解析>>

同步练习册答案