精英家教网 > 高中数学 > 题目详情
在空间直角坐标系中,已知.若分别是三棱锥坐标平面上的正投影图形的面积,则(   )
A.B.
C.D.
D

试题分析:三棱锥在平面上的投影为,所以
在平面平面上的投影分别为,则在平面上的投影分别为,因为,所以
故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图6,四棱柱的所有棱长都相等,,四边形和四边形为矩形.
(1)证明:底面;
(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,
。M、N分别是AC和BB1的中点。
(1)求二面角的大小。
(2)证明:在AB上存在一个点Q,使得平面⊥平面,   
并求出的长度。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,平面平面,//,,
,且.
(1)求证:平面
(2)求和平面所成角的正弦值;
(3)在线段上是否存在一点使得平面平面,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(2013•湖北)如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC⊥平面ABC,E,F分别是PA,PC的中点.
(1)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;
(2)设(1)中的直线l与圆O的另一个交点为D,且点Q满足.记直线PQ与平面ABC所成的角为θ,异面直线PQ与EF所成的角为α,二面角E﹣l﹣C的大小为β.求证:sinθ=sinαsinβ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理)已知直三棱柱中,是棱的中点.如图所示.
 
(1)求证:平面
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,四边形是边长为的正方形,分别是边上的点(M不与AD重合),且于点,沿将正方形折成直二面角
(1)当平行移动时,的大小是否发生变化?试说明理由;
(2)当在怎样的位置时,两点间的距离最小?并求出这个最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在四棱锥P-ABCD中,侧面PAD为正三角形,底面ABCD为正方形,侧面PAD⊥底面ABCD,M为底面ABCD内的一个动点,且满足MP=MC,则点M在正方形ABCD内的轨迹为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知向量=(2,4,5),=(3,x,y),若,则(  )
A.x=6,y=15B.x=3,y=
C.x=3,y=15D.x=6,y=

查看答案和解析>>

同步练习册答案