【题目】设函数.
(1)求函数的单调区间;
(2)若函数有两个零点,求满足条件的最小正整数的值;
(3)若方程,有两个不相等的实数根,比较与0的大小.
【答案】(1) 单调增区间为,单调减区间为. (2) ,(3)详见解析
【解析】试题分析: (1)先求函数导数,再求导函数零点 ,根据定义域舍去,对进行讨论, 时,,单调增区间为.时,有增有减;(2) 函数有两个零点,所以函数必不单调,且最小值小于零 ,转化研究最小值为负的条件:,由于此函数单调递增,所以只需利用零点存在定理探求即可,即取两个相邻整数点代入研究即可得的取值范围,进而确定整数值,(3)根据,所以只需判定大小,由可解得,代入分析只需比较大小, 设,构造函数,利用导数可得最值,即可判定大小.
试题解析:(1)解: .
当时,,函数在上单调递增,函数的单调增区间为.
当时,由,得;由,得.
所以函数的单调增区间为,单调减区间为.
(2)解:由(1)得,若函数有两个零点
则,且的最小值,即.
因为,所以.令,显然在上为增函数,
且,,所以存在,.
当时,;当时,.所以满足条件的最小正整数
(3)证明:因为是方程的两个不等实根,由(1)知.
不妨设,则,.
两式相减得,
即.
所以.因为,
当时,, 当x∈时,,
故只要证即可,即证明,
即证明,
即证明.设.
令,则.
因为,所以,当且仅当t=1时,,所以在上是增函数.
又,所以当时,总成立.所以原题得证
科目:高中数学 来源: 题型:
【题目】(本小题12分)根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.某城市环保部门随机抽取了一居民区去年20天PM2.5的24小时平均浓度的监测数据,数据统计如下:
]
组别 | PM2.5浓度(微克/立方米) | 频数(天) | 频率 |
第一组 | 3 | 0.15 | |
第二组 | 12 | 0.6 | |
第三组 | 3 | 0.15 | |
第四组 | 2 | 0.1 |
(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;
(Ⅱ)求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】口袋中装有2个白球和n(n≥2,nN*)个红球.每次从袋中摸出2个球(每次摸球后把这2个球放回口袋中),若摸出的2个球颜色相同则为中奖,否则为不中奖.
(I)用含n的代数式表示1次摸球中奖的概率;
(Ⅱ)若n=3,求3次摸球中恰有1次中奖的概率;
(III)记3次摸球中恰有1次中奖的概率为f(p),当f(p)取得最大值时,求n的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量,为坐标原点,动点满足:.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)已知直线都过点,且,与轨迹分别交于点,试探究是否存在这样的直线?使得是等腰直角三角形.若存在,指出这样的直线共有几组(无需求出直线的方程);若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家用电器公司生产一新款热水器,首先每年需要固定投入 200万元,其次每生产1百台,需再投入0.9万元.假设该公司生产的该款热水器当年能全部售出,但每销售1百台需另付运输费0.1万元.根据以往的经验,年销售总额(万元)关于年产量(百台)的函数为.
(1)将年利润表示为年产量的函数;
(2)求该公司生产的该款热水器的最大年利润及相应的年产量.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着移动互联网时代的到来,手机的使用非常普遍,“低头族”随处可见。某校为了解家长和教师对学生带手机进校园的态度,随机调查了100位家长和教师,得到情况如下表:
教师 | 家长 | |
反对 | 40 | 20 |
支持 | 20 | 20 |
(1)是否有95%以上的把握认为“带手机进校园与身份有关”,并说明理由;
(2)把以上频率当概率,随机抽取3位教师,记其中反对学生带手机进校园的人数为X,求随机变量X的分布列和数学期望.
附:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方形ABCD-A1B1C1D1中,E,F,M分别是棱B1C1,BB1,C1D1的中点,是否存在过点E,M且与平面A1FC平行的平面?若存在,请作出并证明;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com