精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的前n项和 ,其中n∈N* . (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设 ,求数列{bn}的前n项和Tn
(Ⅲ)若对于任意正整数n,都有 ,求实数λ的最小值.

【答案】解:(Ⅰ)当n=1时,a1=S1=﹣3;

当n≥2时,an=Sn﹣Sn﹣1=n2﹣4n﹣(n﹣1)2+4(n﹣1)=2n﹣5,

因为a1=﹣3符合上式,

所以an=2n﹣5(n∈N*).

(Ⅱ)由(Ⅰ)得

所以Tn=b1+b2+…+bn=(2﹣3+1)+(2﹣1+1)+…+(22n﹣5+1)

=(2﹣3+2﹣1+…+22n﹣5)+n

= =

(Ⅲ)

= =

当n=1时, ,(注:此时 ),

当n≥2时,因为

所以

则n=1时,取得最大值.

因为对于任意正整数n,都有

由题意,得

所以λ的最小值为


【解析】(Ⅰ)由数列的递推式:当n=1时,a1=S1;当n≥2时,an=Sn﹣Sn﹣1,计算即可得到所求通项;(Ⅱ)由(Ⅰ)得 .运用数列的求和方法:分组求和,结合等比数列的求和公式,计算即可得到所求和;(Ⅲ)运用数列的求和方法:裂项相消求和,化简整理,判断数列的最值,再由恒成立思想,即可得到所求实数λ的最小值.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知△ABC的顶点A(1,3),AB边上的中线CM所在直线方程为2x﹣3y+2=0,AC边上的高BH所在直线方程为2x+3y﹣9=0.求:
(1)顶点C的坐标;
(2)直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数y=f(x)的定义域为D,值域为A,如果存在函数x=g(t),使得函数y=f[g(t)]的值域仍是A,那么称x=g(t)是函数y=f(x)的一个等值域变换.
(1)判断下列函数x=g(t)是不是函数y=f(x)的一个等值域变换?说明你的理由; ①
②f(x)=x2﹣x+1,x∈R,x=g(t)=2t , t∈R.
(2)设f(x)=log2x的定义域为x∈[2,8],已知 是y=f(x)的一个等值域变换,且函数y=f[g(t)]的定义域为R,求实数m、n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a3=12,a11=﹣5,且任意连续三项的和均为11,则a2017=;设Sn是数列{an}的前n项和,则使得Sn≤100成立的最大整数n=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+(2a+1)x+b,其中a,b∈R. (Ⅰ)当a=1,b=﹣4时,求函数f(x)的零点;
(Ⅱ)如果函数f(x)的图象在直线y=x+2的上方,证明:b>2;
(Ⅲ)当b=2时,解关于x的不等式f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等腰梯形ABCD中,AB∥CD,且|AB|=2,|AD|=1,|CD|=2x其中x∈(0,1),以A,B为焦点且过点D的双曲线的离心率为e1 , 以C,D为焦点且过点A的椭圆的离心率为e2 , 若对任意x∈(0,1)不等式t<e1+e2恒成立,则t的最大值为( )
A.
B.
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取100件样本,测量这些样本的一项质量指标值,由测量结果得如下频数分布表:

质量指标
值分组

[75,85)

[85,95)

[95,105)

[105,115)

[115,125]

频数

6

26

38

22

8

则样本的该项质量指标值落在[105,125]上的频率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱 中,底面 是边长为2的正方形, 分别为线段 的中点.

(1)求证: ||平面
(2)四棱柱 的外接球的表面积为 ,求异面直线 所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)是定义在(0,+∞)上的函数,当x>1时,f(x)>0,且满足
(1)求f(1)的值;
(2)判断并证明函数的单调性;
(3)若f(2)=1,解不等式

查看答案和解析>>

同步练习册答案