分析 设出切点坐标,利用导数求出过切点的切线方程,再把已知点代入,求出切点横坐标,则切线方程可求.
解答 解:设切点为(${x}_{0},\frac{1}{{x}_{0}}$),
由y=$\frac{1}{x}$,得y′=$-\frac{1}{{x}^{2}}$,
∴$y′{|}_{x={x}_{0}}=-\frac{1}{{{x}_{0}}^{2}}$,
则切线方程为y-$\frac{1}{{x}_{0}}=-\frac{1}{{{x}_{0}}^{2}}(x-{x}_{0})$,
把点(1,0)代入,可得$-\frac{1}{{x}_{0}}=-\frac{1}{{{x}_{0}}^{2}}(1-{x}_{0})$,解得${x}_{0}=\frac{1}{2}$.
∴切线方程为y-2=-4(x-$\frac{1}{2}$),即4x+y-4=0.
故答案为:4x+y-4=0.
点评 本题考查利用导数研究过曲线上某点处的切线方程,关键是明确切点是否在曲线上,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{3}{2}$ | C. | $\frac{4}{3}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9}{5}$i | B. | -$\frac{9}{5}$i | C. | 3i | D. | -3i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com