精英家教网 > 高中数学 > 题目详情
7.若复数z=$\frac{3+ai}{2-i}$(a∈R,i是虚数单位)是纯虚数,则复数z的共轭复数是(  )
A.$\frac{9}{5}$iB.-$\frac{9}{5}$iC.3iD.-3i

分析 直接由复数代数形式的乘除运算化简z=$\frac{3+ai}{2-i}$,结合已知条件列出方程组,求解可得a的值,然后代入z=$\frac{3+ai}{2-i}$化简求出复数z,则复数z的共轭复数可求.

解答 解:∵z=$\frac{3+ai}{2-i}$=$\frac{(3+ai)(2+i)}{(2-i)(2+i)}=\frac{6-a+(3+2a)i}{5}$=$\frac{6-a}{5}+\frac{3+2a}{5}i$是纯虚数,
∴$\left\{\begin{array}{l}{\frac{6-a}{5}=0}\\{\frac{3+2a}{5}≠0}\end{array}\right.$,解得a=6.
∴z=$\frac{3+ai}{2-i}$=$\frac{3+6i}{2-i}=\frac{(3+6i)(2+i)}{(2-i)(2+i)}=\frac{15i}{5}=3i$.
则复数z的共轭复数是:-3i.
故选:D.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在一次数学测验后,班级学委王明对选答题的选题情况进行了统计,如下表:(单位:人)
几何证明选讲坐标系与参数方程不等式选讲合计
男同学124622
女同学081220
合计12121842
(Ⅰ)在统计结果中,如果把《几何证明选讲》和《坐标系与参数方程》称为几何类,把《不等式选讲》称为代数类,我们可以得到如下2×2列联表:(单位:人)
几何类代数类总计
男同学16622
女同学81220
总计241842
根据以下列联表,在犯错误不超过多少的情况下认为选做“几何类”或“代数类”与性别有关.
(Ⅱ)在原统计结果中,如果不考虑性别因素,按分层抽样的方法从选做不同选做题的同学中随机选出7名同学进行座谈.已知学委王明和两名数学科代表三人都在选做《不等式选讲》的同学中.
①求在这名班级学委被选中的条件下,两名数学科代表也被选中的概率;
②记抽到数学科代表的人数为X,求X的分布列及数学期望E(X).
下面临界值表仅供参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.i+i2+i3+…+i2017=i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=2sin(\frac{π}{3}-\frac{x}{2})+1$.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)解不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知复数z=m(m-1)+(m-1)i
(1)当实数m为何值时,复数z为纯虚数
(2)当m=2时,计算$\overline{z}$-$\frac{z}{1-i}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.过点(1,0)且与曲线y=$\frac{1}{x}$相切的直线的方程为4x+y-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某厂家拟在“五一”节举行大型促销活动,经测算某产品销售价格x(单位:元/件)与每日销售量y(单位:万件)满足关系式y=$\frac{a}{x-2}$+2(x-5)2,其中2<x<5,a为常数,已知销售价格为3元时,每日销售量10万件.
(1)求a的值;
(2)若该商品的成本为2元/件,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知sinα=$\frac{\sqrt{5}}{5}$,$\frac{π}{2}$≤α≤π,则tanα=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=x3+2x2-3的导函数为f′(x),则f′(-2)等于(  )
A.4B.6C.10D.20

查看答案和解析>>

同步练习册答案