【题目】如图,数轴
,
的交点为
,夹角为
,与
轴、
轴正向同向的单位向量分别是
,
.由平面向量基本定理,对于平面内的任一向量
,存在唯一的有序实数对
,使得
,我们把
叫做点
在斜坐标系
中的坐标(以下各点的坐标都指在斜坐标系
中的坐标).
![]()
(1)若
,
为单位向量,且
与
的夹角为
,求点
的坐标;
(2)若
,点
的坐标为
,求向量
与
的夹角;
(3)若
,求过点
的直线
的方程,使得原点
到直线
的距离最大.
科目:高中数学 来源: 题型:
【题目】在合作学习小组的一次活动中,甲、乙、丙、丁、戊五位同学被随机地分配承担
,
,
,
四项不同的任务,每个同学只能承担一项任务.
(1)若每项任务至少安排一位同学承担,求甲、乙两人不同时承担同一项任务的概率;
(2)设这五位同学中承担任务
的人数为随机变量
,求
的分布列及数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设甲、乙、丙三个乒乓球协会分别选派3,1,2名运动员参加某次比赛,甲协会运动员编号分别为
,
,
,乙协会编号为
,丙协会编号分别为
,
,若从这6名运动员中随机抽取2名参加双打比赛.
(1)用所给编号列出所有可能抽取的结果;
(2)求丙协会至少有一名运动员参加双打比赛的概率;
(3)求参加双打比赛的两名运动员来自同一协会的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,椭圆上的点到右焦点
的距离的最大值为3.
(1)求椭圆
的方程;
(2)若过椭圆
的右焦点
作倾斜角不为零的直线
与椭圆
交于两点
,设线段
的垂直平分线在
轴上的截距为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市一次全市高中男生身高统计调查数据显示:全市100000名男生的身高服从正态分布N(168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160 cm和184 cm之间,将测量结果按如下方式分成6组:第1组[160,164),第2组[164,168),…,第6组[180,184],如图是按上述分组方法得到的频率分布直方图.
![]()
(1)由频率分布直方图估计该校高三年级男生平均身高状况;
(2)求这50名男生身高在172 cm以上(含172 cm)的人数;
(3)在这50名男生身高在172 cm以上(含172 cm)的人中任意抽取2人,将该2人中身高排名(从高到低)在全市前130名的人数记为ξ,求ξ的数学期望.
参考数据:若ξ~N(μ,σ2),则P(μ-σ<ξ≤μ+σ)=0.6826,P(μ-2σ<ξ≤μ+2σ)=0.9544,P(μ-3σ<ξ≤μ+3σ)=0.9974.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,且椭圆上一点
的坐标为
.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
,
两点,且以线段
为直径的圆过椭圆的右顶点
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中
为自然对数的底数,
。
(Ⅰ)若曲线
在点
处的切线与直线
平行,求
的值;
(Ⅱ)若
,问函数
有无极值点?若有,请求出极值点的个数;若没有,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com