【题目】已知椭圆
:
的离心率为
,且椭圆上一点
的坐标为
.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
,
两点,且以线段
为直径的圆过椭圆的右顶点
,求
面积的最大值.
【答案】(1)
;(2)![]()
【解析】
(1)将
点坐标代入椭圆方程,结合椭圆的离心率列方程,解方程求得
的值,由此求得椭圆方程.(2)设直线
的方程为
,联立直线
的方程和椭圆的方程,消去
,得到关于
的一元二次方程,写出韦达定理,根据
列方程,解方程求得
的值.由此判断出直线
过定点
,由
求得三角形面积的表达式,利用换元法,结合二次函数的单调性,求得三角形面积的最大值.
(1)由已知
,又
,则
.
椭圆方程为
,将
代入方程得
,
,
故椭圆的方程为
;
(2)不妨设直线
的方程
,
联立
消去
得
.
设
,
,则有
,
①
又以线段
为直径的圆过椭圆的右顶点
,∴
,
由
,
得
,
将
,
代入上式得
,
将①代入上式求得
或
(舍),
则直线
恒过点
.
∴![]()
,
设
,则
在
上单调递增,
当
时,
取得最大值
.
科目:高中数学 来源: 题型:
【题目】如图,数轴
,
的交点为
,夹角为
,与
轴、
轴正向同向的单位向量分别是
,
.由平面向量基本定理,对于平面内的任一向量
,存在唯一的有序实数对
,使得
,我们把
叫做点
在斜坐标系
中的坐标(以下各点的坐标都指在斜坐标系
中的坐标).
![]()
(1)若
,
为单位向量,且
与
的夹角为
,求点
的坐标;
(2)若
,点
的坐标为
,求向量
与
的夹角;
(3)若
,求过点
的直线
的方程,使得原点
到直线
的距离最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知直线
的方程为
,曲线
是以坐标原点
为顶点,直线
为准线的抛物线.以坐标原点
为极点,
轴非负半轴为极轴建立极坐标系.
(1)分别求出直线
与曲线
的极坐标方程:
(2)点
是曲线
上位于第一象限内的一个动点,点
是直线
上位于第二象限内的一个动点,且
,请求出
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为鼓励家校互动,与某手机通讯商合作,为教师办理流量套餐.为了解该校教师手机流量使用情况,通过抽样,得到
位教师近
年每人手机月平均使用流量
(单位:
)的数据,其频率分布直方图如下:
![]()
若将每位教师的手机月平均使用流量分别视为其手机月使用流量,并将频率为概率,回答以下问题.
(Ⅰ) 从该校教师中随机抽取
人,求这
人中至多有
人月使用流量不超过
的概率;
(Ⅱ) 现该通讯商推出三款流量套餐,详情如下:
套餐名称 | 月套餐费(单位:元) | 月套餐流量(单位: |
|
|
|
|
|
|
|
|
|
这三款套餐都有如下附加条款:套餐费月初一次性收取,手机使用一旦超出套餐流量,系统就自动帮用户充值
流量,资费
元;如果又超出充值流量,系统就再次自动帮用户充值
流量,资费
元/次,依次类推,如果当月流量有剩余,系统将自动清零,无法转入次月使用.
学校欲订购其中一款流量套餐,为教师支付月套餐费,并承担系统自动充值的流量资费的
,其余部分由教师个人承担,问学校订购哪一款套餐最经济?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某中学学生对数学学习的情况,从该校抽了
名学生,分析了这
名学生某次数学考试成绩(单位:分),得到了如下的频率分布直方图:
![]()
(1)求频率分布直方图中
的值;
(2)根据频率分布直方图估计该组数据的中位数(精确到
);
(3)在这
名学生的数学成绩中,从成绩在
的学生中任选
人,求次
人的成绩都在
中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com